Linear Array Thinning with Cavity backed U-slot Patch Antenna using Genetic Algorithm

  • Novalia Pertiwi Department of Telecommunication Engineering, Institut Teknologi Sumatera, Lampung, Indonesia
  • Fannush Shofi Akbar Department of Telecommunication Engineering, Institut Teknologi Telkom Surabaya, Indonesia
  • Eko Setijadi Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Gamantyo Hendrantoro Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Abstract

In this paper, a thinned linear array with Cavity backed U-slot Patch has been investigated using the Genetic Algorithm to minimize peak sidelobe level and the number of antenna elements. One of the essential steps in the Genetic Algorithm method is a crossover, which uses the Paired Top Ten and Combined Top Five rules applied to the Cavity backed U-slot Patch antenna. The peak sidelobe level value is -18.63 dB with a array filling of 63.33% at the broadside angle using Combined Top Five rules. In Paired Top Ten, the peak sidelobe level value is -19.48 dB with a array filling of 70%. The two methods are still better as compared to a dense array. This study is essential in the development of radar technologies since it needs a low sidelobe level.

Downloads

Download data is not yet available.

References

[1] R. L. Haupt, “Thinned Arrays Using Genetic Algorithms,” IEEE Trans. Antennas Propag., vol. 42, no. 7, pp. 993–999, 1994.
[2] R. L. Haupt, “Interleaved thinned linear arrays,” IEEE Trans. Antennas Propag., vol. 53, no. 9, pp. 2858–2864, 2005.
[3] K. Yan and Y. Lu, “Sidelobe Reduction in Array-Pattern,” vol. 45, no. 7, pp. 1117–1122, 1997.
[4] R. Jain and G. S. Mani, “DYNAMIC THINNING OF ANTENNA ARRAY USING GENETIC ALGORITHM,” Prog. Electromagn. Res. B, vol. 32, no. July, pp. 1–20, 2011.
[5] G. K. Mahanti, N. Pathak, and P. Mahanti, “Synthesis of Thinned Lienar Antenna Arrays with Fixed Sidelobe Level using Real-Coded Genetic Algorithm,” Prog. Electromagn. Res. PIER 75, pp. 319–328, 2007.
[6] M. Jijenth, K. K. Suman, V. S. Gangwar, A. K. Singh, and S. P. Singh, “A Novel Technique based on Modified Genetic Algorithm for the Synthesis of Thinned Planar Antenna Array with Low Peak Side Lobe Level over Desired Scan Volume,” 2017 IEEE MTT-S Int. Microw. RF Conf., pp. 251–254, 2017.
[7] C. Liu and H. N. Wu, “Synthesis of thinned array with side lobe levels reduction using improved binary invasive weed optimization,” Prog. Electromagn. Res. M, vol. 37, no. June, pp. 21–30, 2014.
[8] L. Cen, Z. L. Yu, W. Ser, and W. Cen, “Linear aperiodic array synthesis using an improved genetic algorithm,” IEEE Trans. Antennas Propag., vol. 60, no. 2 PART 2, pp. 895–902, 2012.
[9] Z. Wang, Y. Sun, X. Yang, and S. Li, “Hybrid optimisation method of improved genetic algorithm and IFT for linear thinned array,” vol. 2019, no. Irc 2018, pp. 6457–6460, 2019.
[10] C. Cui, W. T. Li, X. T. Ye, X. W. Shi, and S. Member, “Hybrid Genetic Algorithm and Modified Iterative Fourier Transform Algorithm for Large Thinned Array Synthesis,” vol. 1225, no. 2, 2017.
[11] S. S. Borah, A. Deb, and J. Roy, “Design of Thinned Linear Antenna Array using Particle Swarm Optimization (PSO) Algorithm,” Asian J. Converg. Technol., vol. V, no. I, 2019.
[12] W.-B. Wang, Q.-Y. Feng, and D. Liu, “SYNTHESIS OF THINNED LINEAR AND PLANAR ANTENNA ARRAYS USING BINARY PSO ALGORITHM,” Prog. Electromagn. Res., vol. 127, no. April, pp. 371–387, 2012.
[13] V. S. Gangwar, A. K. Singh, E. Thomas, and S. P. Singh, “Side lobe level suppression in a thinned linear antenna array using particle swarm optimization,” Proc. 2015 Int. Conf. Appl. Theor. Comput. Commun. Technol. iCATccT 2015, pp. 787–790, 2016.
[14] A. Trucco, “Thinning and weighting of large planar arrays by simulated annealing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 2, pp. 347–355, 1999.
[15] Ó. Quevedo-Teruel and E. Rajo-Iglesias, “Ant colony optimization in thinned array synthesis with minimum sidelobe level,” IEEE Antennas Wirel. Propag. Lett., vol. 5, no. 1, pp. 349–352, 2006.
[16] L. Gu, Y. Zhao, Z. Zhang, L. Wu, Q. Cai, and J. Hu, “Linear Array Thinning Using Probability Density Tapering Approach,” vol. 1225, no. c, pp. 1–5, 2019.
[17] W. P. M. N. Keizer, “Large Planar Array Thinning Using Iterative FFT Techniques,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3359–3362, 2009.
[18] X. Wang, Y. Jiao, S. Member, and Y. Tan, “Synthesis of Large Thinned Planar Arrays Using a Modified Iterative Fourier Technique,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1564–1571, 2014.
[19] N. Pertiwi, F. S. Akbar, E. Setijadi, and G. Hendrantoro, “Minimizing Peak Side Lobe Level (PSLL) in Thinned Linear Array using Genetic Algorithm with a Novel Crossover Rule,” in Regional Conference in Electrical and Electronisc Engineering, 2017.
[20] M. Simeoni, C. I. Coman, and J. E. Lagetr, “Cos-effective array antennas for narrow-beam, wide-angle scanning applications,” in Proceedings of the 3rd European Radar Conference Cos-effective, 2006, vol. 9, pp. 311–314.
[21] F. S. Akbar, L. P. Ligthart, G. Hendrantoro, and I. E. Lager, “Use of subarrays in linear array for improving wide angular scanning performance,” IEEE Access, vol. 7, pp. 135290–135299, 2019.
[22] F. S. Akbar, L. P. Ligthart, G. Hendrantoro, and I. E. Lager, “Scan loss mitigation via subarrays a full-scale concept demonstrator,” in Proceedings of the 47th European Microwave Conference Scan, 2017, pp. 156–159.
Published
2021-03-11
How to Cite
PERTIWI, Novalia et al. Linear Array Thinning with Cavity backed U-slot Patch Antenna using Genetic Algorithm. Journal of Science and Applicative Technology, [S.l.], v. 5, n. 1, p. 9-16, mar. 2021. ISSN 2581-0545. Available at: <https://journal.itera.ac.id/index.php/jsat/article/view/386>. Date accessed: 14 apr. 2021. doi: https://doi.org/10.35472/jsat.v5i1.386.