Desain Turbin Angin Horisontal untuk Area Kecepatan Angin Rendah dengan Airfoil S826

  • Setiadi Wira Buana Teknik Sistem Energi, Institut Teknologi Sumatera, Lampung Selatan 35365
  • Putty Yunesti Teknik Sistem Energi, Institut Teknologi Sumatera, Lampung Selatan 35365
  • Guna Bangun Persada Teknik Sistem Energi, Institut Teknologi Sumatera, Lampung Selatan 35365
  • Abdul Muhyi Teknik Mesin, Institut Teknologi Sumatera, Lampung Selatan 35365


This research aims to determine performance of turbine rotor performance with a single rotor blade model with a diameter of 0.6 m that has been developed by NORCOWE, while for turbine rotor blades used is the NREL S826 airfoil series. The wind turbines are operated at wind speed intervals of 1-5 m / s. This parameter will also present data in the form of the optimal point of wind turbine rotation and rotor rotation speed. The pitch angles used are 25 °, 30 °, and 35 °. The pitch angle that affects the value of the ideal rotational speed with the highest optimization for the horizontal airfoil turbine S826 is 30 ° with a wind speed of 5 m / s and a rotation of 570 RPM. This is because the greater the pitch angle of the installation, the easier it will be to experience speed trimming but is vulnerable to too large an angle of attack that causes a stall.


Download data is not yet available.


[1] Yudiarto, Anindhita, A. Sugiyono, L. M. A. Wahid, and Adiarso, “Outlook Energy Indonesia 2018,” Pusat Pengajian Industri Proses Energi, vol. 53, no. 9. pp. 1–94, 2018.
[2] R. Sumiati and K. Amri, “Rancang bangun micro turbin angin pembangkit listrik untuk rumah tinggal di daerah kecepatan angin rendah,” J. Tek. Mesin, no. November, pp. 1–5, 2014.
[3] H. Piggott, Windpower workshop: building your own wind turbine. 1997.
[4] R. E. Wilson, “Wind-turbine aerodynamics,” vol. 5, pp. 357–372, 1980.
[5] O. De Vries, “on the Theory of the Horizontal-Axis Wind Turbine.,” Annu. Rev. Fluid Mech., vol. 15, pp. 77–96, 1983, doi: 10.1146/annurev.fl.15.010183.000453.
[6] P. J. Schubel and R. J. Crossley, “Wind turbine blade design,” Energies, vol. 5, no. 9, pp. 3425–3449, 2012, doi: 10.3390/en5093425.
[7] M. K. Johari, M. A. A. Jalil, and M. F. M. Shariff, “Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT),” Int. J. Eng. Technol., vol. 7, no. 4, pp. 74–80, 2018, doi: 10.14419/ijet.v7i4.13.21333.
[8] J. Krøgenes, L. Brandrud, R. Hann, J. Bartl, T. Bracchi, and L. Sætran, “Aerodynamic Performance of the NREL S826 Airfoil in Icing Conditions,” Open-Access J. Eur. Acad. Wind Energy, no. October, pp. 1–17, 2017, doi: 10.5194/wes-2017-39.
[9] V. Nelson, Wind energy: Renewable energy and the environment, second edition. Florida: CRC Press, 2013.
[10] T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi, Wind Energy Handbook, Second Edition. New York: John Wiley & Sons, Ltd, 2011.
[11] S. Eriksson, H. Bernhoff, and M. Leijon, “Evaluation of different turbine concepts for wind power,” Renew. Sustain. Energy Rev., vol. 12, no. 5, pp. 1419–1434, 2008, doi: 10.1016/j.rser.2006.05.017.
[12] R. A. Prahmana, “Analysis Wind Characteristics in South Lampung Indonesia,” J. Sci. Appl. Technol., vol. 2, no. 1, pp. 10–13, 2019, doi: 10.35472/281439.
[13] P. E. Eriksen and P. Å. Krogstad, “Experimental results for the NOWITECH/NORCOWE blindtest,” 2012, doi: 10.1016/j.egypro.2012.06.121.
[14] P. åge Krogstad and P. E. Eriksen, “‘Blind test’ calculations of the performance and wake development for a model wind turbine,” Renew. Energy, 2013, doi: 10.1016/j.renene.2012.06.044.
[15] D. Somers, “The S825 and S826 Airfoils,” Natl. Renew. Energy Lab., no. January, pp. 1994–1995, 2005, [Online]. Available:,S826_Design.pdf.
How to Cite
BUANA, Setiadi Wira et al. Desain Turbin Angin Horisontal untuk Area Kecepatan Angin Rendah dengan Airfoil S826. Journal of Science and Applicative Technology, [S.l.], v. 4, n. 2, p. 86-90, dec. 2020. ISSN 2581-0545. Available at: <>. Date accessed: 24 jan. 2021. doi: