Peningkatan Kinerja Microgrid Bangunan Kampus dengan Simulasi Multi Skenario dan Analisis Sensitivitas

  • Justin Pradipta Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Bandung
  • Koko Friansa Program Studi Teknik Sistem Energi, Institut Teknologi Sumatera, Lampung
  • Irsyad Nashirul Haq Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Bandung
  • Edi Leksono Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Bandung
  • Hanafi Kusumayudha Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Bandung
  • Salsabila Regita Program Studi Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung, Bandung
  • Mediya Wasesa Sekolah Bisnis dan Manajemen, Institut Teknologi Bandung, Bandung

Abstract

Penelitian ini mengevaluasi kinerja microgrid cerdas dengan tujuan untuk meningkatkan ketersediaan pasokan listrik dan renewable fraction (RF). Evaluasi dilakukan dengan simulasi multi skenario yang mencakup produksi dan konsumsi energi. Simulasi dibagi tiga, yaitu skenario dasar, skenario uji, dan skenario rekomendasi. Skenario uji terdiri dari uji kapasitas sistem, penggantian komponen, dan analisis sensitivitas. Didapatkan dari skenario dasar bahwa ketersediaan pasokan listrik selama setahun telah terpenuhi, dengan RF 30,5%; cost of energy (CoE) Rp2.019/kWh; dan waktu otonomi baterai (WOB) 11,1 jam. Dari hasil analisis didapatkan beberapa rekomendasi berupa penggantian komponen baterai dan modul surya, penambahan kapasitas baterai, dan pengaturan batas state of charge (SoC) pada baterai untuk meningkatkan RF. Skenario rekomendasi tersebut berhasil meningkatkan ketersediaan pasokan listrik dan mencapai target dengan nilai WOB sebesar 37 jam dan RF sebesar 46,4% pada awal siklus hidup proyek; serta WOB sebesar 25,5 jam dan RF sebesar 29,1% pada akhir tahun ke 25, dengan CoE sebesar Rp6.448/kWh. Analisis sensitivitas operasi baterai lead-acid menunjukkan bahwa untuk mendapatkan RF maksimal rentang pengaturan SoC berada pada 0-20%. Sedangkan untuk baterai Li-Ion, rentang SoC adalah 0-25%.

Downloads

Download data is not yet available.

References

[1] Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional. Presiden Republik Indonesia, 2017.
[2] J. Wang, B. M. Cisse, D. Brown, dan A. Crabb, “Development of a microgrid control system for a solar-plus-battery microgrid to support a critical facility,” Okt 2017, doi: 10.1109/ISGT.2017.8086060.
[3] “Smart Microgrids: Lessons from Campus Microgrid Design and Implementat.” https://www.routledge.com/Smart-Microgrids-Lessons-from-Campus-Microgrid-Design-and-Implementation/Farhangi/p/book/9780367574512 (diakses Mar 09, 2021).
[4] H. Chao dan R. J. Ringlee, “Analytical challenges in reliability and resiliency modeling,” Agu 2018, doi: 10.1109/PMAPS.2018.8440230.
[5] D. E. Alexander, “Resilience and disaster risk reduction: An etymological journey,” Nat. Hazards Earth Syst. Sci., vol. 13, no. 11, hal. 2707–2716, 2013, doi: 10.5194/nhess-13-2707-2013.
[6] D. C. Jordan, S. R. Kurtz, K. VanSant, dan J. Newmiller, “Compendium of photovoltaic degradation rates,” Prog. Photovoltaics Res. Appl., vol. 24, no. 7, hal. 978–989, Jul 2016, doi: 10.1002/pip.2744.
[7] K. N. Nwaigwe, P. Mutabilwa, dan E. Dintwa, “An overview of solar power (PV systems) integration into electricity grids,” Mater. Sci. Energy Technol., vol. 2, no. 3, hal. 629–633, Des 2019, doi: 10.1016/j.mset.2019.07.002.
[8] A. Kumar Behura, A. Kumar, D. Kumar Rajak, C. I. Pruncu, dan L. Lamberti, “Towards better performances for a novel rooftop solar PV system,” Sol. Energy, vol. 216, hal. 518–529, Mar 2021, doi: 10.1016/j.solener.2021.01.045.
[9] C. Ghenai dan M. Bettayeb, “Grid-Tied Solar PV/Fuel Cell Hybrid Power System for University Building,” in Energy Procedia, Feb 2019, vol. 159, hal. 96–103, doi: 10.1016/j.egypro.2018.12.025.
[10] R. Chedid, A. Sawwas, dan D. Fares, “Optimal design of a university campus micro-grid operating under unreliable grid considering PV and battery storage,” Energy, vol. 200, hal. 117510, Jun 2020, doi: 10.1016/j.energy.2020.117510.
[11] R. AbdelHady, “Modeling and simulation of a micro grid-connected solar PV system,” Water Sci., vol. 31, no. 1, hal. 1–10, Apr 2017, doi: 10.1016/j.wsj.2017.04.001.
[12] D. Dey dan B. Subudhi, “Design, simulation and economic evaluation of 90 kW grid connected Photovoltaic system,” Energy Reports, vol. 6, hal. 1778–1787, Nov 2020, doi: 10.1016/j.egyr.2020.04.027.
[13] I. N. Haq, “Pengembangan Model Arsitektur Sistem Manajemen Baterai Cerdas Untuk Pemantauan dan Peningkatan Kondisi Operasi Penyimpan Energi,” 2019.
[14] M. Uslar et al., “Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective,” Energies, vol. 12, no. 2, hal. 258, Jan 2019, doi: 10.3390/en12020258.
[15] IEC, “IEC 61724-1:2017 | Photovoltaic system performance - Part 1: Monitoring.” Diakses: Mar 09, 2021. [Daring]. Tersedia pada: https://webstore.iec.ch/publication/33622.
[16] B. Kirpes, P. Danner, R. Basmadjian, H. de Meer, dan C. Becker, “E-Mobility Systems Architecture: a model-based framework for managing complexity and interoperability,” Energy Informatics, vol. 2, no. 1, hal. 1–31, Des 2019, doi: 10.1186/s42162-019-0072-4.
[17] Homer Energy, “HOMER Grid 1.8.” https://www.homerenergy.com/products/grid/docs/latest/index.html (diakses Mar 09, 2021).
[18] R. L. Dash, L. Behera, B. Mohanty and P. Kumar Hota, "Cost and sensitivity analysis of a microgrid using HOMER-Pro software in both grid connected and standalone mode," 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), 2018
[19] Ali M. Eltamaly, Mohamed A. Mohamed, Chapter 8 - Optimal Sizing and Designing of Hybrid Renewable Energy Systems in Smart Grid Applications, Advances in Renewable Energies and Power Technologies, Elsevier, 2018.
[20] Ashok Kumar L., Indragandhi V., dan Uma Maheswari Y., “PVSYST,” in Software Tools for the Simulation of Electrical Systems, Elsevier, 2020, hal. 349–392.
Published
2021-07-12
How to Cite
PRADIPTA, Justin et al. Peningkatan Kinerja Microgrid Bangunan Kampus dengan Simulasi Multi Skenario dan Analisis Sensitivitas. Journal of Science and Applicative Technology, [S.l.], v. 5, n. 2, p. 332-341, july 2021. ISSN 2581-0545. Available at: <https://journal.itera.ac.id/index.php/jsat/article/view/458>. Date accessed: 20 sep. 2021. doi: https://doi.org/10.35472/jsat.v5i2.458.