PENGEMBANGAN SISTEM TERINTEGRASI BERBASIS IOT (INTERNET OF THINGS) UNTUK MONITORING DAN KONTROL KUALITAS AIR PADA BUDIDAYA TAMBAK UDANG DARATAN

  • Titin Ervina Sari Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Eko Satria Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Abdul Rajak Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

Abstract

Water quality is very important for the sustainability of a shrimp farm, starting from the quantity and quality of shrimp harvested is very influential on the good quality of the pond water. The water quality in question is parameters such as water turbidity, a lot or clean of dirt in the pool, a pH value that suits your needs and ammonia content in the pond which is usually produced from shrimp manure. This research designed a water quality monitoring and control tool in shrimp ponds that is integrated automatically through an IoT-based system (Internet of Things) using the thingspeak application as a server and telegram bots as controls. Based on the results of tests that have been carried out, the tool has been able to determine the quality of water correctly. The error percentage was 0.01% for turbidity sensors, 0.05% for TDS sensors, 0.01% for pH sensors and 0.12% for ammonia gas sensors. Based on the results of direct data collection on shrimp ponds for 6 hours, the average value of water turbidity was 3.06 NTU, the lowest was 1.07 NTU and the highest was 5.99 NTU, for the average value of TDS content was 170.98 ppm, 150.00 ppm was the lowest and 204.12 ppm was the highest, for the average pH content was 7.80, the lowest was 7.50 and the highest was 8.74, and the average value of ammonia content was 0.004 ppm, 0.0007 ppm is the lowest and 0.0113 is the highest.

Downloads

Download data is not yet available.

Author Biographies

Titin Ervina Sari, Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

Eko Satria, Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

Abdul Rajak, Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

Program Studi Magister Fisika, Fakultas Sains, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia

References

[1] Kementerian Kelautan dan Perikanan, “Nelayan/Pembudidaya Ikan Menurut Jenis Nelayan/Pembudidaya Ikan, Jenis Kegiatan, Tahun dan Provinsi,” https://statistik.kkp.go.id/home.php?m=nelayan_kabupaten_tangkap&level=kabupaten_tangkap, 2022.
[2] Kementerian Kelautan dan Perikanan, “Luas Lahan Budidaya / Provinsi,” https://statistik.kkp.go.id/home.php?m=luaslahan&i=7#panel-footer, 2018.
[3] Kementerian Kelautan dan Perikanan, “Nilai Ekspor Perikanan Indonesia,” https://kkp.go.id/djpdspkp/artikel/47840-ekspor-perikanan-tumbuh-10-66-di-2022#:~:text=Adapun%20komoditas%20utama%20ekspor%20Indonesia,Kepiting%20sebesar%20USD450%2C55%20juta, 2022.
[4] Kementerian Kelautan dan Perikanan, “Produksi Udang di Indonesia,” https://dataindonesia.id/sektor-riil/detail/produksi-udang-indonesia-capai-121-juta-ton-pada-2021, 2021.
[5] Nuhman, “Pengaruh Prosentase Pemberian Pakan Terhadap Kelangsungan Hidup dan Laju Pertumbuhan Udang Vanamei (Litopenaeus vannamei),” Journal Ilm. Perikan. dan Kelaut., 2009, 193.
[6] Farionita I. M. et al., “Analisis Komparatif Usaha Budidaya Udang Vaname Tambak Tradisional Dengan Tambak Intensif Di Kabupaten Situbondo,” Journal Ekonomi Pertanian dan Agribisnis,” vol. 2, 255–266, 2018.
[7] Supono, “Analisis keragaan lele dumbo (Clarias gariepinus) yang dipelihara pada skala intensif dengan sistem zero water exchange,” Seminar Nasional dan Rapat Tahunan Dekan bidang Ilmu-Ilmu Pertanian BKSPTN Wilayah Barat, 2010, 1126–1129.
[8] Agus M., “Analisis Carrying Capacity Tambak pada Sentra Budidaya Kepiting Bakau (scylle sp) di Kabupaten Pemalang - Jawa Tengah,” Universitas Diponegoro, 2008.
[9] Prihatman K., “Budidaya Udang Windu (Palaemonidae/ Penaeidae),” Indonesia, 2000.
[10] Singh Monika, Kishor Brij, “A Review on Removal of Turbidity and TDS from Water by Using Natural Coagulants, India. International Research Journal of Modernization in Engineering Technology and Science, vol. 02, 2582-5208, 2020.
[11] Supriatna, Mahmudi, M., Musa, M., & Kusriani, “Hubungan pH dengan Parameter Kualitas Air pada Tambak Intensif Udang Vannamei (Litopenaeus vannamei),” Journal of Fisheries and Marine Research, 2020, 368-374.
[12] Pemerintah Provinsi Bangka Belitung, “Berdasarkan peraturan Gubernur Kepulauan Bangka Belitung tentang pedoman pengendalian pencemaran air permukaan bagi usaha tambak udang,” https://jdih. babelprov.go.id/sites/default/files/produk-hukum/NO%2034%20TAHUN %202019.pdf., 2019.
[13] Wirman R. P., Wardhan I., Isnaini V. A., “Kajian Tingkat Akurasi Sensor pada Rancang Bangun Alat Ukur Total Dissolved Solids (TDS) dan Tingkat Kekeruhan Air,” https://journal.unnes.ac.id/nju/index.php/jf/index, Jurnal fisika, vol. 02, 2684-978X, 2019.
[14] Melangi S., Asri M., Hulukati Stephan A., “Sistem Monitoring Informasi Kualitas dan Kekeruhan Air Tambak Berbasis Internet of Things,” Jambura Journal of Electrical and Electronics Engineering, vol. 4, 2715-0887, 2022.
[15] Wiranto G., Rahajoeningroem T., Fernanda A. F., “Sistem Monitoring Kualitas Air Menggunakan Sensor Turbidity Metode Nephelometri Berbasis Raspberry PI 3,” Telekontran J. Ilm. Telekomun, vol. 8, 23–29, 2020.
[16] Pauzi G. A., Syafira M. A., Surtono A., Supriyanto A., “ Aplikasi IoT Sistem Monitoring Kualitas Air Tambak Udang Menggunakan Aplikasi Blynk Berbasis Arduino Uno,” Journal Teor. dan Apl. Fis., vol. 05, 1–8, 2017.
[17] Zainuddin Z., Azis A., Idris R., “Sistem Monitoring Kualitas Air Pada Budidaya Udang Vannamae Berbasis Wireless Sensor Network Di Dusun Taipa Kecamatan Mappakasunggu Kabupaten Takalar,” Journal Techno Entrep. Acta, vol. 1, 1–6, 2015.
[18] Rikanto T., “Sistem Monitoring Kualitas Kekeruhan Air Berbasis Internet Of Thing,” Journal Fasilkom, vol. 11, 87–90, 2021.
[19] Talanta D. E., “Rancang Bangun Kontrol Kadar Amonia dan pH Air Berbasis Arduino pada Budidaya Ikan,” https://journal.unesa.ac.id /index.php/jo, vol. 17, 2685-7863, 2021.
[20] Barbon G. et al., ”Taking Arduino to the Internet of Things: The ASIP programming model,” Computer Communications, 89–90, 128–140, 2016.
[21] Miry A. H., Aramice G. A., “Water monitoring and analytic based ThingSpeak,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, 2088-8708, 2020.
[22] Data Sheet (2022): Modul ESP32 https://wiki.dfrobot.com/FireBeetle_ ESP32_IOT_Microcontroller(V3.0)__Supports_Wi-Fi_&_Bluetooth __SKU__DFR0478, 2022.
[23] Data Sheet (2022): Gravity: Turbidity sensor. https://wiki.dfrobot.com/Turbidity_sensor_SKU__SEN0189, 2022.
[24] Pemerintah Republik Indonesia, “Peraturan Menteri Kelautan dan Perikanan Republik Indonesia tentang pedoman umum pembesaran udang windu (Penaeus Monodon) dan udang vaname (Litopenaeus Vannamei),” 75, 2016.
[25] Data Sheet, “Gravity: Analog pH Sensor Meter,” https://wiki.dfrobot.com/Gravity__Analog_pH_Sensor_Meter_Kit_V2_SKU_SEN0161-V2., 2022.
[26] Data Sheet, “Gravity: MEMS Gas Sensor,” https://wiki.dfrobot.com/_SKU_SEN0377_Gravity__MEMS_Gas_Sensor_CO__Alcohol__NO2___NH3___I2C___MiCS_4514., 2022.
[27] Nugroho M.A., Rivai M., “Sistem Kontrol dan Monitoring Kadar Amonia untuk Budidaya Ikan yang Diimplementasi pada Raspberry Pi 3B,” Jurnal Teknik ITS, vol. 7.2, 2337-3539, 2018.
[28] Reforma B., Ma’arif A., Sunardi, “Alat Pengukur Kualitas Air Bersih Berdasarkan Tingkat Kekeruhan dan JumLah Padatan Terlarut,” Jurnal Teknologi Elektro, vol. 13.02, 66-73, 2022.
[29] Rohsyiyah E., Murti S., Megantoro P., “Analisa Sistem Instrumentasi Digital Signal Processing Analog To Digital Converter (ADC),” Metrologi dan Instrumentasi Sekolah Vokasi, Universitas Gadjah Mada, 2022.
[30] Tisna D.R., Putra B., Maharani T., Hasnira, “Metode Peningkatan Akurasi pada Sensor TDS Berbasis Arduino untuk Nutrisi Air Menggunakan Regresi Linier,” Jurnal Integrasi, vol. 14.01, 61-68, 2022.
[31] Ningsih A., Sulistiono, Sulthoniyah S., “Praktik Kerja Lapang Manajemen Kualitas Air Pada Budidaya Udang Vanamei (Litopenaeus Vannamei) Di PT. Surya Windu Kartika Desa Bomo Kecamatan Rogojampi Kabupaten Banyuwangi,”. Jurnal Ilmu Perikanan dan Kelautan, vol. 3.1, 15-25, 2021.
[32] Al Mahdali, “Optimalisasi Kalibrasi Sistem Pemantauan Emisi dengan Menggunakan Sensor Gas, Indonesia. e-Prosiding Seminar Nasional Teknologi Industri,” vol. VIII, 978-602-60451-8-8, 2021.
[33] Pendriadi, Meliala S., Muthalib M.A., Bintoro A., “Studi Kadar Gas Amonia Menggunakan Sensor Amonia MQ135 Menggunakan Spreadsheet Berbasis Internet of Thing (IoT),” JURNAL ILMIAH TEKNIK ELEKTRO, vo. 25.02, 2407-6422, 2023.
Published
2024-07-01
How to Cite
SARI, Titin Ervina; SATRIA, Eko; RAJAK, Abdul. PENGEMBANGAN SISTEM TERINTEGRASI BERBASIS IOT (INTERNET OF THINGS) UNTUK MONITORING DAN KONTROL KUALITAS AIR PADA BUDIDAYA TAMBAK UDANG DARATAN. Journal of Science and Applicative Technology, [S.l.], v. 8, n. 1, p. 73-83, july 2024. ISSN 2581-0545. Available at: <https://journal.itera.ac.id/index.php/jsat/article/view/1698>. Date accessed: 03 july 2024. doi: https://doi.org/10.35472/jsat.v8i1.1698.