Analisis Kestabilan Solusi Soliton pada Persamaan Schrodinger Nonlinier Diskrit Nonlokal

  • Gusrian Putra Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera
  • Hanifah Septaningtiyas Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera
  • Elsa Nabila Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera
  • Lisa Arianti Br Tarigan Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Abstract

In this paper, the Nonlocal Discrete Nonlinear Schrodinger (DNLS) equation that interpolates the Nonlocal Ablowitz-Ladik DNLS and the Nonlocal Cubic DNLS equations and its stability are studied in detail. The solution of the Nonlocal SNLD equation is a soliton wave in the form of a Gaussian ansatz obtained using the method of Variational Approximation (VA). The stability of the solution is also analyzed using the VA. These semi-analytical results are then compared to numerical results. The soliton and its stability obtained via VA is concluded to be having a fairly good conformity with numerical results.

Downloads

Download data is not yet available.

Author Biographies

Gusrian Putra, Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Hanifah Septaningtiyas, Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Elsa Nabila, Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Lisa Arianti Br Tarigan, Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

References

[1] H.S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, dan J.S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys.Rev. Lett. 81, pp. 3383, 1998.
[2] P. G. Kevrekidis, Discrete Nonlinear Schro ̈dinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives. Berlin: Springer, 2009.
[3] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Berlin: Springer, 2009.
[4] M. J. Ablowitz, dan J. F. Ladik, “Nonlinear differential-difference equations,” J. Math. Phys. 16, pp. 598, 1976.
[5] R. S. MacKay, dan S. Aubry, “Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,” Nonlinearity. 7, pp. 1623-1643, 1994.
[6] M. Kot, A First Course in the Calculus of Variations. Rhode Island: American Mathematical Society, 2000.
[7] B. A. Malomed, “Variational Methods in Nonlinear Fiber Optics and Related Fields,” Prog. Opt, pp. 43: 69, 2002.
[8] R. Rusin, R. Kusdiantara, dan H. Susanto, “Variational approximations using Gaussian ansatz, false instability, and its remedy in nonlinear Schro ̈dinger lattices,” Phys. Rev. E. 87: 063202, 2018.
[9] K. A. Sarma, M. A. Miri, Z. H. Musslimani, dan N. D. Christodoulides, “Continuous and discrete Schro ̈dinger systems with parity-time symmetric nonlinearities,” Phys. Rev. E. 89: 052918, 2014.
[10] G. Putra, M. Syafwan, dan H. Susanto, “Aproksimasi Variasional untuk solusi soliton pada persamaan Schro ̈- dinger nonlinier diskrit nonlocal,” Jurnal Matematika Unand. Vol. 5 No. 3, pp. 40-46, 2016.
[11] G. Putra, M. Syafwan, dan Haripamyu, “The existence and stability of onsite solitons in a discrete nonlinear nonlocal Schro ̈dinger equation,” J. Phys. Conf. Ser. 1554: 012046, 2020.
Published
2022-04-15
How to Cite
PUTRA, Gusrian et al. Analisis Kestabilan Solusi Soliton pada Persamaan Schrodinger Nonlinier Diskrit Nonlokal. Indonesian Journal of Applied Mathematics, [S.l.], v. 2, n. 1, p. 17-24, apr. 2022. ISSN 2774-2016. Available at: <https://journal.itera.ac.id/index.php/indojam/article/view/730>. Date accessed: 16 may 2022. doi: https://doi.org/10.35472/indojam.v2i1.730.