Analisis Hubungan Kepadatan Penduduk dengan Pola Penyebaran COVID-19 Provinsi DKI Jakarta menggunakan Regresi Robust

  • Tiara Shofi Edriani Program Studi Matematika, Institut Teknologi Sumatera, Lampung, Indonesia
  • Anisa Rahmadani Program Studi Matematika, Institut Teknologi Sumatera
  • Dear Michiko Mutiara Noor Program Studi Matematika, Institut Teknologi Sumatera, Lampung, Indonesia


COVID-19 pandemic have been spread around the world since the first outbreak on Desember 2019 in Wuhan, China. DKI Jakarta as one of the highest population density among 34 provinces in Indonesia, has become an endemic area of COVID-19 with the rate of new cases show some fluctuation for each month along 2020. This is a secondary data research which drawn from Health Ministry of Indonesia as well as Center of Statistics for DKI Jakarta. Focus and the scope of this paper is on analyzing the relation between new cases of COVID-19 with population density of Jakarta’s districts. Descriptive and inferential analysis that combined with Robust Regression Test are conducted due to some outliers data. This unbiased method shows a good regression model of spreading new positive cases. M-Estimator Robust Regression with Tukey Bisquare function,  shows the best result with the least Residual Standar Error (RSE), that is 0.411.  Analysis on statistical test for the chosen model shows that population density has significant impacts on outbreak pattern of COVID-19 in Jakarta. But mobilities and interactions betweeen citizens has also give a great impact.


Download data is not yet available.


[1] Worldometer 2020, Coronavirus Cases, (diakses 19 Novermber 2020).
[2] (2020), Timeline: WHO’s COVID-19 response, (diakses 19 November 2020).
[3] Neiderud, C. J., dan MD, “How urbanization affects the epidemiology of emerging infectious disease,” Infection Ecolofy and Epidemiology, 2015.
[4] Martinez, R., dan Irna N. M. “Jakarta: A city of cities”, Elsevier, 2020.
[5] Emilie A, dkk. “Urbanisation and infectious diseases in a globalised world”, Elsevier vol. 11, 2011.
[6] Chandra S., dkk. “A geographic analysis of population density thesholds in influenza pandemic of 1918-19,” International Journal of Helath Geographics.
[7] Tammes, P. “Social distancing, population density, and spread of COVID-19 in England.”
[8] Jawad, A. J., “Effectiveness of population density as natural social distancing in COVID-19 spreading”, Elsevier Masson SAS.
[9] Hamidi, S., “Does Density Aggravate the COVID-19 Pandemic,” Journal of American Planning Association, vol. 86 Number 4, pp. 495-508, June 2020.
[10] Ghiffari, R. A., “Dampak populasi dan mobilitas perkotaan terhadap penyebaran pandemi COVID-19 di Jakarta”, Jurnal Tunas Geografi Vol. 09 No. 01, pp.81-88, Juli 2020.
[11] Li, R. dkk, “Effect of population density on epidemics,” Physica A: Statistical Mechanics and Its Application.
[12] Ryan, T. P., “Modern Regression Methods”, Canada: John Wiley & Son, Inc., 1997.
[13] Chen, Colin., “Robust Regression and Outlier Detection with the ROBUSTREG Procedure,” SUGI Paper 265-27, 2002.
[14] Razali, N. M., dkk. “Power Comparison of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Test,” Journal of Statistical Modeling and Analytics Vol. 1, No. 1, pp. 21-33, 2011.
[15] Breusch, T. S., dan A. R. Pagan, “A Simple Test for Heteroscedasticity and Random Coefficient Variation,” Journal of The Economics Society Vol. 47 No. 5, pp. 1287-1294, 1979.
[16] Durbin, J., dan G. S. Watson, “Testing for Serial Correlation in Least Squares Regression II,” Biometrika Vol. 38 No.1/2, pp. 159-177, 1951.
[17] Walpole, R. E, dan R. H. Myers, “Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuan Edisi ke-4”, Bandung: ITB Press, 1995.
How to Cite
EDRIANI, Tiara Shofi; RAHMADANI, Anisa; NOOR, Dear Michiko Mutiara. Analisis Hubungan Kepadatan Penduduk dengan Pola Penyebaran COVID-19 Provinsi DKI Jakarta menggunakan Regresi Robust. Indonesian Journal of Applied Mathematics, [S.l.], v. 1, n. 2, p. 51-60, may 2021. ISSN 2774-2016. Available at: <>. Date accessed: 16 june 2021. doi: