Quantitative Performance Analysis of Spring-Mass-Damper Control Systems

A Comparative Implementation in Python and R

  • Sandy Hardian Susanto Herho University of California, Riverside
  • Siti Nurzannah Kaban Bandung Institute of Technology
Keywords: Control systems, Cross-platform implementation, Numerical methods, Performance analysis, Spring-mass-damper dynamics

Abstract

The numerical simulation of control of spring-mass-damper (SMD) systems offer critical insights into dynamical systems and computational methodologies. This study provides a comprehensive comparative analysis of implementing SMD systems across two prominent open-source scientific computing platforms: Python and R. By examining both open-loop and closed-loop system configurations, the research investigates the computational performance, numerical accuracy, and implementation characteristics of these platforms. Utilizing an idealized one-dimensional SMD system with a Proportional-Integral-Derivative (PID) controller, the study conducted extensive numerical simulations and statistical performance analyses. Results revealed Python's significant advantages in execution speed, achieving up to 63.57% reduction in runtime for controlled system simulations, while R demonstrated superior consistency in execution and memory usage. The controlled system demonstrated exceptional performance, with a final position error of merely 0.4% and enhanced damping characteristics. This work not only bridges theoretical stability analysis with empirical performance insights but also promotes reproducibility and transparency in computational dynamics research by leveraging open-source platforms.

Downloads

Download data is not yet available.

Author Biographies

Sandy Hardian Susanto Herho, University of California, Riverside

Department of Earth and Planetary Sciences

Siti Nurzannah Kaban, Bandung Institute of Technology

Offshore Engineering Research Group

References

[1] Irawan, D.E., Pourret, O., Besan¸con, L., Herho, S.H.S., Ridlo, I.A., Abraham, J.: Post-Publication Review: The Role of Science News Outlets and Social Media. Annals of Library and Information Studies 71, 465–474 (2024) https://doi.org/ 10.56042/alis.v71i4.1425

[2] Fraser, N., Brierley, L., Dey, G., Polka, J.K., P´alfy, M., Nanni, F., Coates, J.A.: The evolving role of preprints in the dissemination of COVID-19 research and their impact on the science communication landscape. PLoS Biology 19(4), 3000959 (2021) https://doi.org/10.1371/journal.pbio.3000959

[3] Sugimoto, C.R., Work, S., Larivi`ere, V., Haustein, S.: Scholarly use of social media and altmetrics: A review of the literature. Journal of the Association for Information Science and Technology 68(9), 2037–2062 (2017) https://doi.org/10. 1002/asi.23833

[4] Harris, C., Millman, K., Walt, S., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N., Kern, R., Picus, M., Hoyer, S., Kerk- wijk, M., Brett, M., Haldane, A., R´ıo, J., Wiebe, M., Peterson, P., Oliphant, T.: Array Programming with NumPy. Nature 585(7825), 357–362 (2020) https://doi.org/10.1038/s41586- 020-2649-2

[5] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna- peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern,
R., Larson, E., Carey, C.J., Polat, , Feng, Y., Moore, E.W., VanderPlas, J., Lax- alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., Mulbregt, P.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17(3), 261–272 (2020) https://doi.org/10.1038/s41592-019-0686-2

[6] McKinney, W.: Data Structures for Statistical Computing in Python. In: Walt, S., Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, pp. 51–56 (2010). https://doi.org/10.25080/majora-92bf1922-00a

[7] Soetaert, K., Petzoldt, T., Setzer, R.W.: Solving Differential Equations in R: Package deSolve. Journal of Statistical Software 33(9), 1–25 (2010) https://doi.org/10.18637/jss.v033.i09

[8] Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., Fran¸cois, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., M¨uller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H.: Welcome to the Tidyverse. Journal of Open Source Software 4(43), 1686 (2019) https://doi.org/10.21105/joss.01686

[9] Ogata, K.: Modern Control Engineering. Prentice Hall, Upper Saddle River, NJ, USA (2010)

[10] Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River, New Jersey, USA (2002)

[11] Dorf, R.C., Bishop, R.H.: Modern Control Systems. Prentice Hall, Upper Saddle River, NJ, USA (2011)

[12] Nise, N.S.: Control Systems Engineering. John Wiley & Sons, New York City, NY, USA (2020)

[13] Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Pearson, Upper Saddle River, NJ, USA (2015)

[14] ˚Astr¨om, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton, NJ, USA (2008)

[15] Chen, C.-T.: Linear System Theory and Design. Oxford University Press, Oxford, UK (1995)

[16] Waskom, M.L.: Seaborn: Statistical Data Visualization. Journal of Open Source Software 6(60), 3021 (2021) https://doi.org/10.21105/joss.03021

[17] Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java Performance Evaluation. ACM SIGPLAN Notices 42(10), 57–76 (2007) https://doi.org/10.1145/1297105.1297033

[18] Thompson, S.K.: Sampling. Wiley Series in Probability and Statistics, New York City, NY, USA (2012) https://doi.org/10.1002/9781118162934

[19] Herho, S., Anwar, I., Herho, K., Dharma, C., Irawan, D.: COMPARING SCIENTIFIC COMPUTING ENVIRONMENTS FOR SIMULATING 2D NONBUOYANT FLUID PARCEL TRAJECTORY UNDER INERTIAL OSCILLATION: A PRELIMINARY EDUCATIONAL STUDY. Indonesian Physical Review 7(3), 451–468 (2024) https://doi.org/10.29303/ipr.v7i3.335

[20] Herho, S., Fajary, F., Herho, K., Anwar, I., Suwarman, R., Irawan, D.: Reappraising Double Pendulum Dynamics across Multiple Computational Platforms. Preprints (2024) https://doi.org/10.20944/preprints202405.0232.v1

[21] Herho, S., Kaban, S.N., Irawan, D.E., Kapid, R.: Efficient 1D Heat Equation Solver: Leveraging Numba in Python. Eksakta : Berkala Ilmiah Bidang MIPA (2024) https://doi.org/10.24036/eksakta/vol25-iss02/487

[22] Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. John Wiley & Sons, New York, USA (1991)

[23] Brown, R.J.C., Brown, R.F.C.: Statistical Analysis of Measurement Data. Royal Society of Chemistry, London, United Kingdom (1998)

[24] Hoaglin, D.C., Mosteller, F., Tukey, J.W.: Understanding Robust and Exploratory Data Analysis. Wiley-Interscience, Hoboken, NJ, USA (2000)

[25] Mostafavi, S., Hakami, V., Paydar, F.: Performance Evaluation of Software Defined Networking Controllers: A Comparative Study. Computer and Knowledge Engineering 2(2), 63–73 (2020) https://doi.org/10.22067/cke.v2i2.84917

[26] Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, New York City, NY, USA (2017)

[27] Bulmer, M.G.: Principles of Statistics. Dover Publications, New York, USA (1979)

[28] Razali, N.M., Wah, Y.B.: Power Comparisons of Shapiro-Wilk, KolmogorovSmirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and Analytics 2(1), 21–33 (2011)

[29] Siegel, S.: Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York City, NY, USA (1956)

[30] Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6), 80–83 (1945) https://doi.org/10.2307/3001968

[31] Levene, H.: Robust Tests for Equality of Variances. In: Olkin, I. (ed.) Contributions to Probability and Statistics, pp. 278–292. Stanford University Press, Stanford, California, USA (1960)

[32] Brown, M.B., Forsythe, A.B.: Robust Tests for the Equality of Variances. Journal of the American Statistical Association 69(346), 364–367 (1974) https://doi.org/10.1080/01621459.1974.10482955

[33] Sullivan, G.M., Feinn, R.: Using Effect Size—or Why the P Value is Not Enough. Journal of Graduate Medical Education 4(3), 279–282 (2012) https://doi.org/10.4300/JGME-D-12-00156.1

[34] Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Routledge, New York City, NY, USA (1988). https://doi.org/10.4324/9780203771587

[35] Sawilowsky, S.S.: New Effect Size Rules of Thumb. Journal of Modern Applied Statistical Methods 8(2), 597–599 (2009) https://doi.org/10.22237/jmasm/1257035100

[36] Iglewicz, B., Hoaglin, D.C.: Volume 16: How to Detect and Handle Outliers. ASQC Quality Press, Milwaukee, WI, USA (1993)

[37] Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing Surveys 41(3), 1–58 (2009) https://doi.org/10.1145/1541880.1541882

[38] Rousseeuw, P.J., Croux, C.: Alternatives to the Median Absolute Deviation. Journal of the American Statistical Association 88(424), 1273–1283 (1993) https: //doi.org/10.1080/01621459.1993.10476408

[39] Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading, MA, USA (1977)

[40] Aggarwal, C.C.: Outlier Analysis. Springer, New York City, NY, USA (2013). https://doi.org/10.1007/978-1-4614-6396-2

[41] Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing Wrong Data Without Doing Anything Obviously Wrong! ACM SIGARCH Computer Architecture News 37(1), 265–276 (2009) https://doi.org/10.1145/2528521.1508275

[42] Altman, D.G., Machin, D., Bryant, T.N., Gardner, M.J.: Statistics with Confidence: Confidence Intervals and Statistical Guidelines. BMJ Books, London, UK (2013)

[43] Masini, S., Bientinesi, P.: High-Performance Parallel Computations Using Python as High-Level Language. In: Guarracino, M.R., Vivien, F., Tr¨aff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla, F., Kn¨upfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par 2010 Parallel Processing Workshops, pp. 541–548. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21878-1 66

[44] Raschka, S., Patterson, J., Nolet, C.: Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence. Information 11(4), 193 (2020) https://doi.org/10.3390/info11040193

[45] Watson, A., Babu, D.S.V., Ray, S.: Sanzu: A data science benchmark. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 263–272 (2017). https://doi.org/10.1109/BigData.2017.8257934
Published
2025-04-25