Perhitungan Cadangan Premi Asuransi Jiwa Berjangka dengan Menggunakan Metode Zillmer dan Fackler

  • Kristiani Sitorus Institut Teknologi Sumatera
  • Tiara Yulita Program Studi Aktuaria, Fakultas Sains, Institut Teknologi Sumatera
  • Fuji Lestari Program Studi Aktuaria, Fakultas Sains, Institut Teknologi Sumatera
Keywords: Insurance, Term Life Insurance, Premium Reserves, Fackler Method, Zillmer Method.

Abstract

Human life is never free from risk. Along with the development of the era, humans began to realize the importance of protecting themselves in the event of a risk, including the risk of death. To overcome this, many individuals transfer the risk by registering themselves or their families with life insurance. The life insurance that is focused on is term life insurance, which is a form of protection with a certain period of time that has been set. In order to run its operations properly, insurance companies need to prepare premium reserves with accurate calculations. These calculations can be done through two actuarial methods, namely prospective and retrospective methods. This study uses the Zillmer method (prospective) and the Fackler method (retrospective) for calculating premium reserves. The purpose of this study was to determine the analysis of the results of calculating the premium reserve value from the two methods. The premium reserve values ​​calculated using the Zillmer and Fackler methods were different. At an interest rate of 6.25%, the Fackler method produces a higher premium reserve compared to the Zillmer method. This difference is because the Zillmer method includes other costs such as acquisition costs, administration, and agent commissions in calculating premium reserves. In contrast, the Fackler method does not take these costs into account in its calculations.

Downloads

Download data is not yet available.

References

[1] N. Iriana , et. al., “Penentuan Cadangan Premi Asuransi Jiwa Seumur Hidup Menggunakan Metode Zillmer,” Jurnal Matematika, Statistika, dan Komputasi, vol. 16, no. 2, pp. 219-225, 2020.
[2] N. D. Khairunnisa, et. al., “Model Perhitungan Premi Asuransi Jiwa Berjangka Secara Diskrit dan Kontinu,” Prosiding Matematika, vol. 2, no. 01, pp. 37-42, 2016.
[3] L. Dewi., et. al., “Penentuan Cadangan Premi pada Asuransi Jiwa Dwi Guna dengan Metode Zillmer,” Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster), vol. 02, no. 3, pp. 155-162, 2013.
[4] T. Futami, Matematika Asuransi Jiwa, Bagian 1, Tokyo: The Research Institute of Life Insurance Welfare, 1993.
[5] Faturachman, et. al., “Penentuan Cadangan Premi Asuransi Jiwa Dengan Metode Fackler,” EKSPONENSIAL, vol. 13, no. 1, pp. 19-28, 2022.
[6] Y. M Aziz. & S. Susanty, Matematika Bisnis, Bogor: Lembaga Penelitian dan Pengabdian pada Masyarakat Universitas Pakuan, 2019.
[7] M. N. A. Rajak, et. al., “Penentuan Besaran Premi Auransi Jiwa dengan Model Apportionable Fractional Premiums Berdasarkan Tabel Mortalita dengan Metode Interpolasi Kostaki,” Jurnal EKSPONENSIAL, vol. 9, no. 1, pp. 27-34, 2018.
[8] I W. D. Pangestu & D. Mahrani, “Analisis Besar Iuran Normal Metode Frozen Initial Liability dan Metode Entry Age Normal Menggunakan Tingkat Suku Bunga Cox-Ingersoll-Ross (CIR),” Indonesian Journal of Applied Mathematics, vol. 3, no. 2, pp. 29-39, 2023.
[9] F. Warni, et. al., “Penentuan Cadangan Asuransi Jiwa Berjangka pada Status Hidup Gabungan Menggunakan Metode Premium Sufficiency,” Jurnal Matematika UNAND, vol. VI, no. 4, pp. 56-63, 2017.
[10] F. Himmah, Penentuan Cadangan Premi Asuransi Jiwa Berjangka dengan Metode Zillmer, Malang: Universitas Brawijaya, 2015
[11] A. R. Maulida, Perhitungan Cadangan Premi pada Asuransi Kesehatan Berjangka Perawatan Rumah Sakit Menggunakan Metode Fackler, Jakarta: Universitas Negeri Jakarta, 2021.
Published
2024-10-31