k-Means Clustering to Enhance the Petrified Wood Composition Data Analyses and Its Interpretation

  • Triyana Muliawati Institut Teknologi Sumatera
  • Danni Gathot Harbowo Institut Teknologi Sumatera
  • Andre Markus Fernando Lubis Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera
  • Juan Daniel Turnip Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera
  • Erina Rosalia Irda Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera
  • Adelia Azahra Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera
  • Yanti Marito Program Studi Matematika, Jurusan Sains, Institut Teknologi Sumatera

Abstract

Geologically, the fossilization of wood materials into fossils requires appropriate conditions, some of which have been preserved for millions of years. In nature, the organic mass of wood must be quickly replaced by inorganic elements before it decomposes under harsh geological conditions. Anorganic oxides such as silica-oxide, are known to be the main components of most wood specimens (up to 80%). The presence of alkaline oxides such as sodium and potassium oxide seems to play a major role in the presence of dissolved silica during petrification. However, their significance in the petrification phenomenon that occurs in fossilized plant wood is not yet known. Therefore, in this study, cluster analysis was conducted to determine the relationship between the presence of silica and alkaline compounds in petrified wood fossils. The approach used was -means clustering supported by the Elbow Method, which aims to review and order a complex set of data into subsets, thus allowing interpretation. The results showed that the clustering of the fossil wood composition data was optimal at  = 3. There is a fair correlation between the presence of silica and alkali oxide compounds (-0.504 to -0.387), as well as with another inorganic compounds (+0.957). The presence of sodium and potassium is strongly correlated during silicification (+0.905). Additionally, the results of data clustering made the wood fossilization process susceptible to describe, especially through data regression. The data visualization provides more facts and proper explanations of the role of alkaline oxides in wood silicification. This study furthers our understanding of wood fossilization, especially the diagenesis of wood chemical composition in geological history.

Downloads

Download data is not yet available.

References

[1] G. E. Mustoe, “Silicification of Wood: An Overview”, Minerals, Vol. 13, No. 2: 206, 2023.
[2] H. Oktariani dan A. Hamzah, “Dryobalanoxylon sp.: Silicified Fossil Wood from Lebak Regency Banten Province, Indonesia”, Jurnal Geologi dan Sumberdaya Mineral, Vol. 20, No. 2: 93-99, 2019.
[3] D. G. Harbowo, R. N. F. A. Nahar, D. Sari, T. Julian, T. A. Kuswara, R. A. Abimayu, R. A. Lajona, dan S. Huzaifah, “The Significances of Cretaceous Petrified Wood Fossils from Padangcermin, Lampung in Paleoenvironmental Perspectives”, IOP Conference Series: Earth and Environmental Science, Vol. 1047, No. 1: 012016, 2022.
[4] İ. K. Akbudak, Z. Başıbüyük, dan M. Gürbüz, “Silicified woods consist with malachite, azurite, and hematite in the Middle Eocene Çekerek Formation, Tokat—Turkey”, Lithology and Mineral Resources, Vol. 56: 548-558, 2021.
[5] J. G. Hall, E. F. Smith, N. Tamura, S. C. Fakra, dan T. Bosak, ”Preservation of erniettomorph fossils in clay-rich siliciclastic deposits from the Ediacaran Wood Canyon Formation, Nevada”, Interface focus, Vol. 10, No. 4: 20200012, 2020.
[6] A. P. Andreani, ”Petrified Wood: Karakteristik dan Aplikasinya dalam Bidang Desain Produk”, Jurnal Itenas Rekarupa, Vol. 5, No. 2, 2019.
[7] D. G. Harbowo, ”Proses pembentukan biopatina pada batuan”, Jurnal Konservasi Benda Cagar Budaya Borobudur, Vol. 5: 21-25, 2011.
[8] R. Helilintar dan I. N. Farida, “Penerapan Algoritma K- Means Clustering untuk Prediksi Prestasi”, Jurnal Sains dan Informatika, Vol. 4, No. 2, 2018.
[9] N. P. E. Merliana, Ernawati, dan A. B. Santoso “Analisa Penentuan Jumlah Cluster Terbaik Pada Metode K-Means Clustering,” Proceeding SENDI_U: 978-979, 2015.
[10] K. R. Godfrey, “Correlation methods”, Automatica, Vol.16, No. 5: 527-534, 1980.
[11] M. Philippe, V. Daviero-Gomez, dan V. Suteethorn, “Silhouette and palaeoecology of Mesozoic trees in Thailand”, Geological Society London Special Publications, 315(1), 85-96, 2009.
[12] A. M. Hamad dan N. Tsumura, “Silhouette extraction based on time-series statistical modeling and k-means clustering”, The First Asian Conference on Pattern Recognition: 584–588.
[13] J. A. Hartigan dan M. A. Wong, “Algorithm AS 136: A k-means clustering algorithm”, Journal of the royal statistical society. series c (applied statistics), Vol. 28, No. 1: 100-108, 1979.
[14] K. H. Takahashi dan T. Kagaya, “Guild structure of wood-rotting fungi based on volume and decay stage of coarse woody debris”, Ecological Research, Vol.20: 215-222, 2005.
[15] Z. Wang, Z. Zhuang, Y. Liu, F. Ding, dan M. Tang, ”Color classification and texture recognition system of solid wood panels”, Forests, Vol. 12, No. 9: 1154, 2021.
[16] T. Muliawati dan H. Murfi, “Eigenspace-based fuzzy c-means for sensing trending topics in Twitter”, AIP Conference Proceedings, Vol. 1862, No. 1: 030140, 2017.
[17] E. Bisong, Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners, New York: Apress Berkeley, CA, 2019.
[18] S. Saminpanya, “Trace elements and mineral chemistry of silicified wood from Thailand: colours and elemental distribution”, Australian Journal of Earth Sciences, Vol. 63. No. 7: 873-884, 2016.
[19] F. D. Maio, K. L. Tsui, dan E. Zio, “Combining relevance vector machines and exponential regression for bearing residual life estimation”, Mechanical systems and signal processing, Vol. 31: 405-427, 2012.
[20] E. Ostertagová, “Modelling using polynomial regression”, Procedia Engineering, Vol. 48: 500-506, 2012.
[21] A. P. Grootjans, L. Wolejko, H. D. Mars, A. J. Smolders, dan G. V. Dijk, “On the hydrological relationship between Petrifying-springs, Alkaline-fens, and Calcareous-spring-mires in the lowlands of North-West and Central Europe; consequences for restoration”, Mires and Peat, Vol. 27, No. 12, 2021.
[22] D. G. Harbowo, B. Priadi, T. Julian, R. N. Amelia, D. J. P. Sihombing, dan S. F. Kencana, “A preliminary study on the element abundance in the Hulusimpang Formation, Way Kalianda, Pesawaran, Lampung, Indonesia”, IOP Conference Series: Earth and Environmental Science, Vol. 882, No. 1: 012078, 2021.
[23] G. E. Mustoe, “Uranium mineralization of fossil wood”, Geosciences, Vol. 10, No. 4: 133, 2020.
[24] K. M. Hassan, “Stable isotope ratios of carbonate and organic carbon from silicified tree trunks, petrified forest, New Cairo, Egypt–Possible Interpretations of Palaeoenvironment”, Geochemistry International, Vol. 57: 564-574, 2019.
Published
2023-07-30
How to Cite
MULIAWATI, Triyana et al. k-Means Clustering to Enhance the Petrified Wood Composition Data Analyses and Its Interpretation. Indonesian Journal of Applied Mathematics, [S.l.], v. 3, n. 1, p. 26-33, july 2023. ISSN 2774-2016. Available at: <https://journal.itera.ac.id/index.php/indojam/article/view/1288>. Date accessed: 19 may 2024. doi: https://doi.org/10.35472/indojam.v3i1.1288.