Photometric determination of asteroid 9 Metis rotation period using the OZT-ALTS robotic telescope
Abstract
Asteroid 9 Metis, a prominent main-belt object with an irregular shape and diameter of approximately 190 km, provides insights into early solar system formation and evolution. We determined its synodic rotation period through ground-based photometric observations using the OZT-ALTS robotic telescope at Institut Teknologi Sumatera (Itera). Observations were conducted on May 6, 2025, spanning 6.2 hours continuously. We analyzed 125 calibrated light frames using aperture photometry to construct a light curve. Period analysis employed the Lomb-Scargle periodogram method, suitable for unevenly spaced astronomical data. The periodogram revealed a dominant peak at 2.51 hours. However, the folded light curve exhibited characteristic double-peaked structure with two maxima and minima per cycle, indicating this represents half the actual rotation period. The true synodic rotation period was therefore determined as 5.01 ± 1.01 hours. This result agrees with previously reported values (~5.08 hours), confirming that asteroid 9 Metis has an elongated shape or heterogeneous surface reflectivity. Our study demonstrates that accurate rotational periods can be obtained using moderate-sized telescopes and modern photometric techniques for kilometer-scale asteroids. These findings contribute to understanding asteroid rotational dynamics and provide reference data for future shape modeling studies.
Downloads
References
Hanuš J, Brož M, Durech J, Warner BD, Brinsfield J, Durkee R, Higgins D, et al. An anisotropic distribution of spin vectors in asteroid families. Astron Astrophys. 2013;559:A134. https://doi.org/10.1051/0004-6361/201321993
Vavilov DE, Carry B. Rotation periods of asteroids from light curves of TESS data. Astron Astrophys. 2025;693:A66. https://doi.org/10.1051/0004-6361/202348940
Bolin BT, Ghosal M, Jedicke R. Rotation periods and colours of 10-m-scale near-Earth asteroids from CFHT target of opportunity streak photometry. Mon Not R Astron Soc. 2024;527(2):1633–1637. https://doi.org/10.1093/mnras/stad3227
Kembaren PG, Wibowo RW, Rozzykin AZ. Orbital dynamic of temporary captured object (TCO): 2022 NX1. In: International Seminar on Aerospace Science and Technology. Singapore: Springer Nature Singapore; 2024. p. 283–294. https://doi.org/10.1007/978-981-96-1344-1_31
Malasan HL, Muztaba R, Yusuf AA, Oktaviandra A, Djamal M, Bedel T, et al. Characterization of the small robotic telescope instrument and implementation at ITERA Lampung Astronomical Observatory. J Multidiscip Appl Nat Sci. 2025;5(1):42–55. https://doi.org/10.47352/jmans.2774-3047.227
Lang D, Hogg DW, Mierle K, Blanton M, Roweis S. Astrometry.Net: blind astrometric calibration of arbitrary astronomical images. Astron J. 2010;139(5):1782. https://doi.org/10.1088/0004-6256/139/5/1782
Lomb NR. Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci. 1976;39:447–462. https://doi.org/10.1007/BF00648343
Scargle JD. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J. 1982;263:835–863. https://doi.org/10.1086/160554
VanderPlas J. Understanding the Lomb–Scargle periodogram. Astrophys J Suppl Ser. 2018;236(1):16. https://doi.org/10.3847/1538-4365/aab766
Leroy B. Fast calculation of the Lomb-Scargle periodogram using nonequispaced fast Fourier transforms. Astron Astrophys. 2012;545:A50. https://doi.org/10.1051/0004-6361/201219076
JPL Small-Body Database. “9 Metis.” Accessed June 2025.
Santana-Ros T, Dudziński G, Bartczak P. Shape models and physical properties of asteroids. In: Assesment and Mitigation of Asteroid Impact Hazards. 2017. https://doi.org/10.1007/978-3-319-46179-3_4
Nakayama H, Fujii Y, Ishiguro M, Nakamura R, Yokogawa S, Yoshida F, Mukai T. Observations of polarization and brightness variations with the rotation for asteroids 9 Metis, 52 Europa, and 1036 Ganymed. Icarus. 2000;146(1):220–231. https://doi.org/10.1006/icar.2000.6396
Müller TG, Barnes PJ. 3.2 mm lightcurve observations of (4) Vesta and (9) Metis with the Australia Telescope Compact Array. Astron Astrophys. 2007;467(2):737–747. https://doi.org/10.1051/0004-6361:20066626
Alí-Lagoa V, Müller TG, Usui F, Hasegawa S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron Astrophys. 2018;612:A85. https://doi.org/10.1051/0004-6361/201731806
Szabó GM, Pál A, Szigeti L, Bognár Z, Bódi A, Kalup C, et al. Rotation periods and shape asphericity in asteroid families based on TESS S1–S13 observations. Astron Astrophys. 2022;601. https://doi.org/10.1051/0004-6361/202142223
Durech J, Hanuš J. Reconstruction of asteroid spin states from Gaia DR3 photometry. Astron Astrophys. 2023;675:A24. https://doi.org/10.1051/0004-6361/202345889
Carry B, Peloton J, Le Montagner R, Mahlke M, Berthier J. Combined spin orientation and phase function of asteroids. Astron Astrophys. 2024;687:A38. https://doi.org/10.1051/0004-6361/202449789
Eggl S, Farnocchia D, Chamberlain AB, Chesley SR. Star catalog and proper motion corrections in asteroid astrometry II: the Gaia era. Icarus. 2020;339:113596. https://doi.org/10.1016/j.icarus.2019.113596
Cellino A, Tanga P, Muinonen K, Mignard F. Asteroid spin and shape properties from Gaia DR3 photometry. Astron Astrophys. 2024;687:A277. https://doi.org/10.1051/0004-6361/202449297
Müller TG, Burgdorf M, Alí-Lagoa V, Bühler SA, Prange M. The Moon at thermal infrared wavelengths: a benchmark for asteroid thermal models. Astron Astrophys. 2021;650. https://doi.org/10.1051/0004-6361/202039946
Copyright (c) 2025 Achmad Zainur Rozzykin, Aditya Abdilah Yusuf, Ridlo Wahyudi Wibowo, Adhitya Oktaviandra, Novia Doloyanty Br Sinaga, Zeni Septiani, Muhammad Rafiansyah, Ioga Lazuardi

This work is licensed under a Creative Commons Attribution 4.0 International License.
