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Abstract: An active contour that uses the pixel’s intensity on a set of expandable kernels along the propagating contour is 
presented in this paper. The objective in this study is to employ the scalable kernels to drive the contour to meet the intended 
boundary. The key characteristics of this scheme is that the kernels gradually expand to find an object’s boundary. So this scheme 
could penetrate to the concave boundary more effective and efficient than some other schemes. If a Gaussian kernel is applied, 
it could trace the object with a blurred or smooth boundary. Moreover, the directional selectivity feature enables in capturing 
two edge’s types with just one initial position. Its performance showed more desirable segmentation outcomes compared to 
the other existing active contours using regional information when segmenting the noisy image and the non-uniform (or 
heterogeneous) textures. Meanwhile, the level set implementation enables topological flexibility to our active contour scheme. 
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Introduction 

Active contours [1]-[6] had been extensively used in 
addressing the image segmentation problems. The 
contour propagates from its initial position until it 
arrived at the region of interest. An energy function 
associated with the contour’s smoothness and the 
image characteristics is optimized by a gradient flow to 
regulate the contour motion, such that when the 
contour coincides with the boundaries, the function 
should reach its optimum. Two often used categories of 
the image features are the object’s edge and the 
regional information. Edge-based models compute the 
image gradient priori and use the obtained edge pixels 
as boundary candidates. As a result, the image becomes 
non-zero at the rapid intensity changes, supposedly the 
actual boundaries. The spatial intensity variation such as 
the non-uniform background may disappear while a 
rapid intensity change was converted into the edges. In 
fact, not only the boundaries but also the noises 
attribute as the rapid intensity changes. Since the force 
on the contour front depends on such image gradient, 
the contour deforms gradually either inward or outward 
before finally stopped on the strong edges where the 
magnitude of the force was minimal. However, it often 
evolve slowly with a small capture range. The additional 
balloon force may gain a faster convergence and a larger 
capture range despite making it sensitive to 

initialization. To reduce the sensitivity to the noises, a 
Gaussian smoothing filter and a balloon force may be 
tuned with larger value. But, it also result in the blurring 
the true boundaries making the contour pass through 
the noises and the weak boundaries or the occluded 
objects. To overcome these classical drawbacks of the 
image gradient, the regional information uses statistics 
of several pixels within an object’s region to drive the 
contour to meet the boundary. There has been several 
regional descriptors for active contours in the literature. 
They can be categorized into four categories according 
to the data fitting terms or the energy measures. They 
are the global regional information, the scalable global 
regional information, the scalable local regional 
information, and the local regional information as 
illustrated in Figures 1. 

The organization of this paper is given as follows. Various 
regional descriptors of existing active contours are 
reviewed and classified in the next section. Section III 
describes our presented active contour scheme. In 
Section IV, the experimental results comparing our 
scheme with the other existing schemes on real and 
synthetic images are discussed. The last section 
concludes the paper. 
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(c)             (d) 

Figure 1. Various regional descriptors of existing active contour schemes 
using; (a) global regional information, (b) scalable global regional 
information, (c) scalable local regional information, and (d) local regional 
information. 

Regional Descriptors For Active Contour Schemes 

The Global Regional Information Scheme 

In 1989, Mumford and Shah [9] introduced theoretical 
scheme of the piecewise smooth model that provides 
the foundation to the global regional image 
segmentation. Later, Tsai et al [10] and Vese and Chan 
[11] implemented it independently using the level set 
method [7]. The piecewise smooth model of Mumford-
Shah [9] assumed the region to be smooth with a slow 
variation; whereas, its simplification, the piecewise 
constant model of Chan and Vese [12] estimated the 
regions by the the constant intensity averages on the 
either image regions delimited by the contour. When the 
means approximated the regions optimally, this energy 
is minimized. Later, Yezzi et al. [13] included the regional 
variances to the model’s statistics. Michailovich et al. 
[14] minimized the probability density functions of the 
intensity histograms on the two sides of the contour. 
Note that these models used the global regional data 
fitting functions or statistics in both sides the contour as 
a clue to detect the boundary. Hence, they were called 
as the global regional schemes. 

The Scalable Global Regional Information Scheme 

Li et al. [16] proposed a region-scalable fitting (RSF) 
scheme to deal with the non-uniform textures, which 
could not be distinguished using the previous global 
energy measure, by sliding the fixed-scale Gaussian 

kernels into every pixels in the interior and exterior of 
the contour. The scalable kernel allowed an estimation 
of the mean intensity at a regional Gaussian sigma from 
the small to large size. The kernel was of fixed size and 
did not change during the contour evolution. Thus, it 
was included as a global scalable regional information. 
The similar scheme could also be found in [17], [18]. Brox 
and Cremers [19] interpreted this scheme as the 
statistical piecewise smooth model where their efficient 
implementation techniques were presented in [19], 
[20]. Its relationship with the Bayesian models, its 
extension, and simplification were derived in [19] as 
well. These schemes have also been extended to the 
simultaneous bias correction [40], [39], [41], [38] and 
multiphase segmentation [21] where its implementation 
without active contour offered even more efficient 
performance [22]. [40] tackled this non-uniform 
intensity problem using spatially locally varying mean 
and variance but does not take into account the variance 
component that is included in [38]. Similar to [38], [40] 
was implemented to jointly approximate the 
multiplicative bias component while segmenting the 
images.  

The use of the kernel suffered the disadvantages of using 
the local energy measures. The small size kernel 
provided the local intensity estimation but the least 
difference in statistics, which led to (almost) no contour 
evolution on a homogeneous area. While large size 
kernel estimated intensity similar to the global regional 
energy measure. Piovano and Papadopoulo [23] 
modified [20] to tackle the local minima problem which 
also caused the global coherence problem by finding the 
minimum size larger than a threshold to generate an 
evolution and adding the directional scheduling 
regarding the local inner and outer statistics. In addition, 
[43], [42] were introduced in order to stabilize the level 
set function. 

Utilizing the entire image feature on the either regions 
of the contour, these two global regional statistics 
behaved as a gravitational field to segment the image 
into some areas represented by the contour. The global 
regional schemes allowed an intensity approximation of 
the whole image and had no selection to estimate a 
smaller area. The scalable global regional schemes, on 
contrary, provided the selection of the size from the 
local neighbourhood to the whole image. 

The Scalable Local Regional Information Scheme 

The global data fitting method may produce a poor 
segmentation result due to the overlapped probability 
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densities of the inhomogenous textures between the 
foreground and the background. Reducing the 
overlapping distributions analogously to the local edge 
assumption, Lankton and Tannenbaum [24] and Darolti 
et al. [25] introduced active contours using local 
statistics to sample the image intensity inside a set of the 
predetermined-size balls (LRAC) and square windows 
(LRD) along the contour pixels. The local regions were 
formed by dividing the window with the contour front 
while the rest of image features were not included. 
These models were considered as the local scalable 
regional active contours. 

The inability to measure the intensity statistics outside 
the fixed-scale window on the homogeneous region 
contributed to the zero statistics force. The user needed 
to set a kernel size priori and appropriately. If the initial 
contour was positioned far from the object and the 
kernel size is too small, the contour could not find any 
concave boundaries. Consequently, it had a diminished 
capture range because the small kernels may not have 
enough samples to induce the motion. On the other 
hand, the large scale tend to ignore the intensity details 
which may lead to the segmentation inaccuracy, a global 
regional method behaviour. It is hard to set a proper 
scale when different concave boundaries existed. As 
long as the window found the boundary with enough 
information, the contour position on the boundary is the 
least affected and accurate in general. To tackle the 
contour not to stuck in the local minima during finding 
the boundary, the LRD utilized the balloon force to grow 
the contour. The local statistics near the boundary was 
then different enough to stop the contour. The balloon 
force limits the initial position to be placed only inside 
object’s boundary. It was still not clear that the LRD was 
able in capturing any concave boundaries. 

While the aforementioned models [24]-[25] had a 
slightly similar idea in embedding the scalable window 
on the contour points, the authors [29]-[31] embedded 
a local energy measure along the neighbourhood band 
on both sides of the contour with an adjustable width. 
Dealing with the heterogeneous textures, J. Mille [29] 
introduced an active contour using narrowband region 
where two intensity variances were calculated within 
the fixed-thickness regions both sides the contour. The 
small width contributed to the local minima problems 
while the large width led to the global constraint 
properties. Consequently, it had a poor capture range 
when the energy measures had the least difference 
statistics. Li and Yezzi [30] presented the dual-front 

active contours. The dilation and erosion operations 
were employed to lengthen the narrow active region 
both side the contour with an adjustable width using a 
certain criteria. Ronfard [31] employed an adaptive-
width region, using the separate and non-overlapping 
neighbourhood, around the parametric contour. 
Although this model did not explicitly address the non-
uniform and heterogeneous textures problems, this 
framework allowed adapting the neighbourhood width 
and merging to form a larger band when the 
homogeneous area did not give the statistics force. 

The Local Regional Information Scheme 

Using the parametric contour, Karaolani et al. [26] 
presented an active contour using finite elements to 
regulate the local neighborhood. A local regional force 
was generated from a certain number of the sampled 
local intensity elements along the contour, hence, the 
segmentation accuracy depended on the number of 
elements. Inspired by [28], [12], Phumeechanya et al. 
[27] presented an active contour using local region-
based force with extendable search lines (LRES). While 
[28] used the normal lines of pre-determined fixed-
length to detect the image edges, the LRES drives the 
contour using the local information on the normal 
extendable lines to reach the concave boundary. It had 
a superiority in handling the heterogeneous texture 
images. Nevertheless, different with the scalable RSF’s 
Gaussian kernel and LRAC’s ball mask, the LRES forces 
were determined from the search lines whose the area 
was thin and not proportional, hence, not scalable to a 
large image area. Despite the search line was 
extendable, its area did not change much, thus, was 
unable to mask either significantly smaller or larger 
image areas. These models were therefore categorized 
as the local regional schemes. Moreover, the unscalable 
search lines may provided insufficient statistics, thus, 
produced a relatively low force. Consequently, the LRES 
algorithm was time consuming. 

These two local regional models tried to locate the 
boundaries by gradually deforming the contour similar 
to those in the edge information schemes. The local 
regional schemes only estimated the local intensity but 
did not accommodate any scale choice to measure the 
region with various sizes. Meanwhile, the local scalable 
regional schemes had a flexibility to estimate the 
intensity statistics using various scales of the kernel. 
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In this paper, an active contour method employing 
scalable local regional (SLR) statistics on expandable 
kernel is presented. Our active contour uses various size 
kernels to direct the contour to meet the boundary. The 
kernels are centered on the evolving contour as shown 
in Figure 2. The kernel is of adaptive scale during the 
contour’s evolution. The kernel size adaptation is 
regulated by the local pixel’s intensity. The kernel is 
expanded slowly until enough statistics provide the 
contour the direction to detect an object’s boundary. In 
this manner, the objects with the concave boundary 
within the image domain could be captured, in contrast 
to the fixed-scale window that does not induce any 
evolution if it did not detect any object. The various scale 
that adaptively changes help the method to capture the 
concave boundary with a large range. Meanwhile, the 
scalable local regional information enables 
segmentation of images with non-uniform and 
heterogeneous textures at a rapid convergence rate. 
Our model with Gaussian kernel could trace both 
smooth or blurred boundary. The level set formulation 
accommodated our contour a topological flexibility. In 
addition, The directional selectivity property was 
extracted from our model to attract the two objects with 
different edge’s types using one initial contour. Both 
schemes have been presented in [32], [37] where its 
extension for multiple region segmentation has been 
presented in [44], [45]. 

 

Figure 2. Scalable local region on expandable kernel [32] 

Method 

The Scalable Local Regional (SLR) Information 

Our active contour is implemented via the level set method. 
One of its advantages is that any topological changes during 

its evolution is handled by itself. Let Ω be the image spatial 
domain and the evolving contour at time  𝑡 , 𝐶(𝑡) ⊂ Ω  be 
embedded as the zero level of the level set function 𝜙(𝐱) →
ℜ, where ℜ is a set of real numbers.  

𝐶(𝑡) = {𝐱 ∈ Ω: 𝜙(𝐱, 𝑡) = 0} with 𝜙(𝐱, 0) = 𝐶0,  (1) 

where 𝐶0  is initial contour. Define the smooth Heaviside 
function 𝐻ϵ(𝜙) and the smooth Dirac delta function 𝛿ϵ(𝜙) 
as in (2) and (3), respectively [12]. The inner region, outer 
region, and the region around the contour are represented 
by 𝐻ϵ(𝜙), 1 − 𝐻ϵ(𝜙), and 𝛿ϵ(𝜙), respectively. 

𝐻ϵ(𝜙) = {

1 if 𝜙 > 𝜖
0 if 𝜙 < −𝜖

1

2
(1 +

2

𝜋
arctan (

𝜙

𝜖
)) if |𝜙| ≤ 𝜖

, (2) 

 

𝛿ϵ(𝜙) = {

1 if 𝜙 = 𝜖

0 if |𝜙| < 𝜖
1

𝜋
(

𝜖

𝜋2+𝜙2) if |𝜙| ≤ 𝜖
.  (3) 

 
The local regional information used in our SLR scheme is the 
mean intensity inside the expandable kernels whose the 
centers are on the contour. The motion of the evolving 
contour is regulated by such local statistics. The evolving 
contour separates the kernels centered on the contour into 
two local regions as in Fig. 2 (b). These regions are formed to 
measure the scalable local regional statistics, 𝜇in and 𝜇out.  

Here the scalable local regional force was derived. A kernel is 
located along the evolving contour to mask the local region. 
Let 𝑑 = ‖𝐱 − 𝐲‖  be the 𝐿2  norm distance between the 
kernel’s center pixel 𝐱  and the other pixels 𝐲  within the 
kernel support. The uniform kernel 𝐾u(𝑑) = 𝑐, for a positive 
constant 𝑐  or a Gaussian kernel 𝐾G(𝑑) =

1

(2𝜋)𝑛 2⁄ 𝜎𝑛 exp (−
𝑑2

2𝜎2) can be used. The scalable local regional 

(SLR) energy in each kernel mask 𝐾(𝑑) is defined by 

𝐸SLR(𝜙) = ∫ 𝐾(‖𝐱 − 𝐲‖)
Ω

∙ 𝐹(𝐼(𝐱), 𝜙(𝐱))𝑑𝐱, (4) 

where 𝐼 denote the pixels’ intensity from an input image. 𝐹 
denote the SLR’s energy measure. From three global regional 
active contour models [12]-[14], two candidates for 𝐹  are 
mentioned here. 

The Chan-Vese energy function [12], as in (5), assumes the 
object and background to be of statistically homogeneous. 
The energy is minimized by their averages intensity values 
that are approximately at a constant level. 
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𝐹CV = |𝐼(𝐱) − 𝜇in(𝐲)|2𝐻ϵ(𝜙(𝐱)) + |𝐼(𝐱) − 𝜇out(𝐲)|2 (1 −

      𝐻ϵ(𝜙(𝐱))).                                    (5) 

The energy function (6) proposed by Yezzi et al. [13], has an 
assumption that the intensity average of the foreground and 
background are very different. 

𝐹MS = −
1

2
|𝜇in(𝐲) − 𝜇out(𝐲)|2,   (6) 

where 𝜇in  and 𝜇out  represent the local mean intensities of 

both regions inside the kernel 𝐾(𝐱 − 𝐲)  separated by the 
contour, given by 

𝜇in
(𝐲) =

∫ 𝐾(‖𝐱−𝐲‖)𝐻ϵ(𝜙(𝐱))Ω 𝐼(𝐱)𝑑𝐱

∫ 𝐾(‖𝐱−𝐲‖)𝐻ϵ(𝜙(𝐱))Ω 𝑑𝐱
,   (7) 

𝜇out
(𝐲) =

∫ 𝐾(‖𝐱−𝐲‖)(1−𝐻ϵ(𝜙(𝐱)))Ω 𝐼(𝐱)𝑑𝐱

∫ 𝐾(‖𝐱−𝐲‖)(1−𝐻ϵ(𝜙(𝐱)))Ω 𝑑𝐱
.  (8) 

By taking the derivative of (3) with respect to 𝜙, the SLR 
force is given by 

𝐹SLR = ∫ 𝐾(‖𝐱 − 𝐲‖)
𝜕𝐹(𝐼(𝐱),𝜙(𝐱))

𝜕𝜙(𝐱)Ω
𝑑𝐱.   (9) 

To fully express 𝐹SLR, derivative of the aforementioned 
energies, 𝐹CV and 𝐹MS, is taken with respect to φ. 
𝜕𝐹(𝐼(𝐱),𝜙(𝐱))

𝜕𝜙(𝐱)
becomes 

𝜕𝐹CV

𝜕𝜙
= 𝛿ϵ(𝜙(𝐱))(|𝐼(𝐱) − 𝜇in(𝐲)|2 − |𝐼(𝐱) − 𝜇out(𝐲)|2),

      (10) 

𝜕𝐹MS

𝜕𝜙
= 𝛿ϵ(𝜙(𝐱))(𝜇in(𝐲) − 𝜇out(𝐲)) (

𝐼(𝐱)−𝜇in(𝐲)

𝐴in
+

𝐼(𝐱)−𝜇out(𝐲)

𝐴out
),     (11) 

where 𝐴in and 𝐴out are the two areas of our SLR kernel that 
is separated by the evolving contour, as follows: 

𝐴in = ∫ 𝐾(‖𝐱 − 𝐲‖)𝐻ϵ(𝜙(𝐱))
Ω

𝑑𝐱,  (12) 

𝐴out = ∫ 𝐾(‖𝐱 − 𝐲‖) (1 − 𝐻ϵ(𝜙(𝐱)))
Ω

𝑑𝐱.  (13) 

𝐸(𝜙) = − (∫ 𝛿ϵ(𝜙(𝐲))𝐸SLRΩ
𝑑𝐲 − 𝜐 ∫ |∇𝐻ϵ(𝜙(𝐲))|

Ω
𝑑𝐲),

    (14) 

Our total energy term is shown in (14). ESLR is multiplied with 

the delta function 𝛿ϵ(𝜙(𝐲)) to ensure that there is no new 

sudden contours development. Our 𝐸SLR  only considers 
pixels distribution within the distance 𝑑  from the kernel 
central point and ignores intensity distribution beyond the 
distance 𝑑 . The smoothing term is put to control the 
elasticity of the contour by weighting the arc length of the 
contour with a parameter 𝜐 as in (9). 

𝜕𝜙

𝜕𝑡
= 𝛿ϵ(𝜙(𝐲))(𝐹SLR + 𝐹SM),   (15) 

𝐹SM = 𝜐div (
∇𝜙(𝐲)

|∇𝜙(𝐲)|
),    (16) 

Finally, we obtain the SLR evolution equation in (15) by taking 
the derivative of the SLR energy function with respect to 𝜙 
and replacing 𝜙  with 𝜙 + 𝜉𝜓 , where 𝜓  represents a small 
change normal to 𝜙 weighted by a tiny number 𝜉. The first 
term, 𝐹SLR , is our scalable local regional force as in (9) to 
drive the the contour. The second term 𝐹SM in (15) as shown 
in (16) enforces smoothness of the contour. 

The Adaptive Local Statistics of the Expandable Kernel 

Within a homogeneous foreground or background, the fixed-
area window may not induce any motion force. Thus, local 
adaptation process may overcome the classical drawbacks of 
the local energy measure. Our method utilizes the kernels of 
various sizes to meet the boundary of an object. The kernel 
expands using certain criteria to cover both foreground and 
background. The kernel size parameterized by the distance 𝑑 
is gradually increasing by setting 𝑑initial + Δ𝑑  pixels. It is 
allowed by checking that the kernel has overlapped any 
homogeneous region or not. In the homogeneous area, i.e., 
𝜇in is the same as 𝜇out. With this condition, the kernel size is 

expanded. In an inhomogeneous region, supposedly when 
crossing the boundary, 𝜇in will be significantly different from 

𝜇out. The absolute difference of 𝜇in and 𝜇out is compared to 

a threshold value, τ to check the difference between 𝜇in and 

𝜇out. For 𝜏 ⊆ [0,1] and 𝐿 = 255 for an 8-bit grayscale image, 

the threshold of the uniform kernel is [𝐿 ∗ 𝜏]. The threshold 
of the Gaussian kernel can be chosen between 0 and 1 
because the normalization constant satisfies ∫ 𝐾G(‖𝐱 −
𝐲‖) 𝑑𝐱 = 1. 

The SLR force informs the contour to move inward or 
outward depending on the magnitude of the difference 
between intensity profile within the kernel, 𝐼 , and 𝜇in  or 

𝜇out. If 𝐼 is closer to 𝜇out than 𝜇in, a positive sign of the SLR 

force locally drive the contour inward. On a contrary, if 𝐼 is 
the same value as 𝜇in  and different from 𝜇out, its negative 

sign drives the contour in the outward direction. The 
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magnitude of this force is normalized to have value in a range 
[−1,1]. It is a force to drive the contour for one iteration. 
Another iteration is started by setting 𝑑𝑖=𝑑initial then repeat 
the process of the kernel adaptation. The evolution stops 
once there is no longer difference between 𝐼 and 𝜇in or 𝜇out 

to induce more statistics force. The overall local adaptation 
process of expandable kernel is illustrated in the flow chart 
of Figure. 3 [32]. 

Figure 3. Flow chart of our SLR active contour evolution step [32] 

The Directional Scalable Local Regional (DSLR) Feature 

Some images may be may be difficult to be distinguished 
because they consist of some regions of interest with 
different kind of the edge and they may overlap or lie on a 
complex background. Existing models, however, may not 
direct the contour to certain kind of the edge, thus, could not 
outline the desired object boundary. With an explicit curve, 
the directional feature is incorporated to the edge-based 
models [33]-[35]. 

Without using image gradient, an edge’s type selectable 
active contour using local regional information with adaptive 
search line is proposed [36]. Formulated in parametric 
contour, it employs pixel values along the search lines with 
adaptive length. The difference of the intensity average on 
the search line is utilised to choose each object with different 
edge’s type. A balloon force is added to avoid a certain image 
area. The baloon force limits initial contour to be put in the 
interior or exterior region of interest only. It also has 
drawbacks associated with the long thin search line. In 
addition, those methods with directional feature are using 
the parametric curve that could not handle topological 
change [2]. 

This subsection describes additional feature to our SLR model, 
i.e., an ability to select object of a particular edge’s type, 
called as the directional scalable local regional using 
expandable kernel (DSLR) [37]. The pixel’s intensity will 
navigate the contour towards a certain type of object edges 
using the sign of the difference between 𝜇in and 𝜇out. If 𝜇in 

is smaller than 𝜇out, it means that the kernel is on a positive 

edge. On the other hand, 𝜇in will be larger than 𝜇out once it 

lies on a negative edge. It behaves as a switch [36] to regulate 
the forces pushing the contour to the desirable edge’s type 
pixels. If the contour points or the kernel crosses an 
unintended local image area, it needs to be guided away by 
different force. Therefore, the SLR evolution equation is 
adjusted as follows. 

𝜕𝜙

𝜕𝑡
= 𝛿ϵ(𝜙(𝐲))(𝐹SM + (1 − 𝛼)𝐹SLR + 𝛼𝐹LB), (17) 

𝐹LB = {+𝜔 inward local balloon
−𝜔 outward local balloon

,  (18) 

𝛼 = sign[𝛽 ∙ sign(𝜇in −  𝜇out) + 1],  (19) 

sign(z) = {
−1 for 𝑧 < 0
0 for 𝑧 = 0

+1 for 𝑧 > 0
,   (20) 

where 𝐹SM, 𝐹SLR , and 𝐹LB  are given in (16), (4), and (18), 
respectively. 

As the last term in (17), a local balloon force is added to 
locally propagate the contour away from an unintended 
object, where 𝜔  is the parameter with positive value that 
behaves as the speed-size of 𝐹LB. 𝐹LB is set to +𝜔 so that 
the contour will shrink. Using this motion constant, the 
initialization can be put in the interior or exterior of the 

object of interest. The switching parameter, 𝛼 , is put 
between the 𝐹SLR and the 𝐹LB. It regulates 𝐹SLR and 𝐹LB to 
act alternately according to the image edge. It subtitutes the 
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force by itself for the kernel every iteration. 𝛼  is either 

valued 0  or 1 . If 𝛼 = 0 , 𝐹SLR  is employed and if 𝛼 = 1 , 
then 𝐹LB  is employed. The local image may be of positive 
and negative edges. The positive edge is where a dark 
foreground lies on a bright background; whereas the 
negative edge is when a bright foreground is on a dark 
background. The desirable type of object edge could be 

selected by setting the parameter 𝛽 . If the positive edge 

object is desired to be captured, 𝛽 value is set to +1 and in 

the case when the negative-edge object is to be found, 𝛽 is 
set to −1 . In addition, sign(∙)  is the sign function as 
illustrated in (20). Figure. 4 illustrates the entire evolution 
step of our DSLR method.  

Figure 4. Flow chart of our DSLR evolution step [37]. 
 

After the kernel found its optimal size, supposed 𝛽 = +1 is 
set and found that 𝜇in < 𝜇out, the SLR force navigates the 

contour. If the kernel crosses a region with 𝜇in > 𝜇out then 

the force is adjusted to the constant motion. For 𝛽 = −1, 
the SLR force direct the contour when 𝜇in > 𝜇out. The local 

constant motion is to direct the contour away from fault 
object boundary when 𝜇in < 𝜇out. The process is reiterated 

until the contour meet the boundary. 

Results And Discussion 

The Scalable Local Regional (SLR) Information 

In this section, a number of experiments are conducted 
using MATLAB to compare our proposed model with 
other active contour models: ACWE, RSF, LRAC and LRES. 
In all tests, we set ν = 0.01×255×255 and λ1 = λ2 = 1 for 
the ACWE, and ν = 0.001 × 255 × 255 and λ1 = λ2 = 1 for 
the RSF, ν = 0.8 for the LRAC, LRES, and SLR. Each column 
of Figures 5 to 7 depicts the initial, the final contours of 
ACWE, RSF, LRAC, LRES, and our SLR overlayed on the 
original images, respectively. The computational costs of 
different methods using local regional information in 
segmenting different images are compared at Tables 1 
and 2.  

The first row of Figure 5 shows an air plane image of 200 
× 340 pixels size. All methods generally segment the air 
plane well. The ACWE and RSF, however, misclassify a 
small part due to its color is the same with the 
background. Then, the contours divide and exclude 
those parts. They converge quickly consuming 10 and 20 
iterations with 6.22 and 6.21 seconds. In contrast, the 
LRAC, LRES, and SLR provide a satisfying boundary. The 
LRAC needs 1800 iterations with 281.24 seconds while 
the LRES is more time costly taking 923.61 seconds for 
500 iterations. Our SLR’s contour stops at 550 iterations 
with 114.94 seconds. 

In the second row of Figure 5, segmentation results of a 
white blood cell image with 200×200 pixels are shown. 
The U-shape nucleus of the white blood cell is our 
targeted boundary. The ACWE and RSF not only 
converge to the nucleos part but also to other parts. The 
LRES contour is positioned on the entire cell instead of 
the nucleus itself and needs a costly computing time 
with 2223.21 seconds for 500 iterations. The LRAC and 
SLR both obtain satisfying results of only the nucleus and 
neglecting other areas. Our SLR arrives quicker 
consuming only 141.58 seconds at 390 iterations 
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compared to the LRAC at 433.52 seconds after 1300 
iterations. 

 

Figure 5. Performance of various active contour scheme; initial and 
final contour for ACWE, RSF, LRAC, LRES, and SLR, respectively. 

 
Table 1. Computational costs for Figure 5. 

No. Image Method 
Number 

of 
Iterations 

Total 
Iteration 

Time 
(seconds) 

Average 
Time 

(seconds 
per 

iterations) 

1 
The air 

plane 

LRAC 550 281.24 0.16 

LRES 500 923.61 1.85 

SLR 550 114.94 0.21 

2 

The 

white 

blood 

cell 

LRAC 1300 433.52 0.33 

LRES 500 2223.21 4.45 

SLR 390 141.58 0.36 

3 
The 

starfish 

LRAC 1500 315.22 0.21 

LRES 275 547.36 1.99 

SLR 310 90.96 0.29 

4 

The 

cartoon 

bear 

LRAC 2000 385.07 0.19 

LRES 190 404.92 2.13 

SLR 240 59.92 0.25 

5 

The CT 

scan of 

liver 

tumor 

LRAC 4000 1014.72 0.25 

LRES 620 2514.90 4.06 

SLR 1350 580.55 0.43 

 

An image of two starfish in the third row of Figure 5 is of 
size 200×200 pixels. Although the RSF algorithm can 
separate the two starfish, it shows some noisy pixels 
within their bodies. As for the LRAC contour in the fourth 
column, it cannot move into the space in between the 
two starfish to separate them. The ACWE, LRES, and SLR, 
on contrary, provide actual boundaries of the two 
starfish separately. By calculating global means 
intensity, the ACWE estimates homogeneous textures 
very well. The scale adaptation process in the LRES and 
SLR gives advantage in tracing various concave shape. 
Our SLR consumes only 90.96 seconds for 310 iterations 
that is quicker than the LRES with 547.36 seconds for 275 
iterations. 

The fourth row of Figure 5 is a cartoon image of a bear 
with size 273×320 pixels. Allowing the user to interact, 
the initial contour is set manually by clicking points and 
connecting them to create a closed contour. The ACWE 
and RSF detect the shadow as the outcome and split the 
bear into some areas. Small kernel helps the RSF to 
segment more details than the ACWE. They consume 
almost similar computing time, i.e., 0.78 and 0.83 
second per iteration. While the RSF needs 40 iterations, 
the ACWE only 10 iterations. With 2000 iterations, the 
LRAC’s contour remains unable to trace concave part 
between the bear’s head and foot. This is because it is 
difficult to set an optimal scale for object with several 
concavity. The LRES locates the bear with some miss at 
the ear part due to the inability of thin search lines to 
reliably sample the pixels intensity. As a result, the 
contour front maybe directed in wrong directions. Also, 
the LRES, requiring 2.13 seconds per iteration, is more 
time consuming than our SLR, which took only 0.25 
second per iteration, yet it can trace the satisfying 
outcome. 

The fifth row of Figure 5 is a 315 × 368 pixels computed 
tomography scan of a liver tumor. The global region-
based models have a tendency to include more than 
liver and tumors as the outcome. While the ACWE traces 
the image with less details, the RSF is able to include the 
tumors. The LRAC’s contour got stucked thus could not 
grow into the bottom of the liver. The LRES captures the 
entire liver including half tumor but with spill-over areas 
on the liver edge. It costs 4.06 seconds for each iteration 
and 2514.90 seconds in total. Nonetheless, our SLR’s 
contour has enough capture range to reach the liver 
boundary while excluding some tumor regions. Level set 
formulation of our SLR allows in handling topological 
changes of liver and two tumors together. Our SLR is 
more effective requiring less iteration than the LRAC and 
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taking less computing time than the LRES, meanwhile, 
provides more satisfying outcome. 

The non-uniform T-shape object in the first row of Figure 
6 is of size 96 × 127 pixels. The RSF, LRAC, LRES, and SLR 
are capable of tracking the non-uniform background but 
the ACWE cannot. The RSF’s final contour is properly 
positioned after 270 iterations consuming 58.48 
seconds. The LRAC required 1600 iterations and 213.88 
seconds while ignoring intensity details in the T-shape 
corners. The LRES still considers the shadow as the 
foreground. Taking only 140 iterations at 17.19 seconds, 
the T-shape object is captured by our SLR correctly. 

The second row of Figure 6 depicts an image of the left 
ventricle of a cardiac MRI with size 324×324 where the 
initial position is put inside the object. Both epicardial 
and endocardial boundaries are required forming a ring-
shape region. The ACWE and RSF classify all bright 
intensities as the object. While the RSF traces more 
pixels intensity and handles inhomogeneous 
background well, the ACWE neglects some pixels 
intensity and its variation. With r = 30, the LRAC contour 
shrinked and disappeared completely. Decreasing r to 25 
makes it evolve but stops after 3000 iterations at two 
intersections. The length between the contour and the 
object is very distant, increasing the number of 
iterations to 4000 iterations still does not induce any 
further evolution. The LRAC’s ball lacks of reliable 
statistics to  generate a motion force. As a result, it 
stucks even with additional 1000 iterations. The LRES’s 
contour confuses and stops at an unintended object. Our 
presented method capture the concave ring-shape 
object with enough range with 1700 iterations at 
2208.45 seconds. 

A heterogeneous texture object without noise in the 
third row of Figure 6 is of size 200 × 200 pixels. The image 
not only contains both bright and dark intensities on its 
object and background but also various concave parts. 
The global mean intensity approximation in ACWE 
results in image segmentation depending on its intensity 
where the bright area represents the object and the dark 
region as the background. The RSF, LRAC, and LRES 
capture most foreground that can be clearly 
distinguished. However, they got confused where the 
object and the background has similar intensity. The 
total computing times are 160.43, 133.64, and 658.35 
seconds. Meanwhile, our scheme obtains a satisfactory 
result consuming only 68.91 seconds for 350 iterations 
at the rate 0.19 second per iteration. 

Figure 6. Performance of various active contour scheme; initial and 
final contour for ACWE, RSF, LRAC, LRES, and SLR, respectively.  

Table 2. Computational costs for Figure 6. 

No. Image Method 
Number 

of 
Iterations 

Total 
Iteration 

Time 
(seconds) 

Average 
Time 

(second 
per 

iterations) 

1 
The T-shape 

object 

LRAC 1600 213.88 0.13 

LRES 100 157.09 1.57 

SLR 140 17.19 0.12 

2 

The cardiac 

MRI of left 

ventricle 

LRAC 4000 1071.63 0.26 

LRES 750 2208.45 2.94 

SLR 1700 724.93 0.42 

3 

The 

heterogeneous 

texture 

without noise 

LRAC 550 133.64 0.24 

LRES 300 658.35 2.19 

SLR 350 68.91 0.19 

4 

The 

heterogeneous 

textures with 

salt and 

pepper noise 

LRAC 550 280.65 0.51 

LRES 300 626.59 2.09 

SLR 400 111.34 0.28 

5 

The ultrasound 

image of left 

ventricle 

LRAC 300 29.99 0.1 

LRES 150 98.49 0.66 

SLR 240 29.90 0.12 

6 
The corpus 

callosum 

LRAC 2500 689.17 0.28 

LRES 670 923.96 1.38 

SLR 1000 305.06 0.31 
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The fourth row of Figure 6 depicts the same object as in 
the third row with additional salt and pepper noise. The 
ACWE needs 10 iterations with 21.48 seconds to 
partition the image according to bright and dark 
intensity and also capturing the white and black noise. 
The RSF requires 30 iterations to produce most of the 
object and the noise as the outcome. This is an effect of 
convolving local window over the entire image. It is 
different from the LRAC, LRES and SLR that employ the 
local image feature and computed it within local 
windows only on the contour. However, the LRAC and 
LRES could not trace correctly the bottom area that is 
hardly distinguishable from the background. Our 
method in the last column provides a complete result in 
the presence of noise with the speed of 0.28 second per 
iteration. 

An ultrasound image of left ventricle of size 221 × 217 is 
shown in the fifth row of Figure 6. The ACWE and RSF 
consider all bright parts as the foreground. the RSF is 
able in segmenting non-uniform intensity whereas the 
ACWE is unable. The SLR behaves in similar manner as 
the LRAC and LRES. Although the number of iterations is 
set to 300, the diminished capture range still exists and 
it prevents the contour to further evolve into the bottom 
part. The LRES that uses adaptive search line does not 
suffer from such problem. However, it still has problem 
segmenting the bottom part due to the intensity is the 
same with the background. The expandable kernel of 
SLR contributes to a more satisfying result although its 
initial size is defined as 15 pixels equal to that of the 
LRAC scheme. 

An MRI image of a corpus callosum of the brain in the 
sixth row of Figure 6 is of size 550×550 where its initial 
contour is positioned to the right of the corpus callosum. 
The ACWE and RSF have a tendency to capture the entire 
image instead of just the corpus callosum. The LRAC, 
LRES and SLR contours are capable of tracing the deep 
concave object. By setting the LRAC’s ball radius and 
SLR’s kernel size as 15 pixels, the LRAC’s contour is 
stucked. Its scale is then adjusted to 20 pixels to capture 
with a larger range. The local adaptation process 
provides the enough capture range to capture a corpus 
callosum entirely using 15 pixels. Moreover, it needs 
1000 iterations less than the 2500 iterations required by 
the LRAC. It converges to the final result faster 
consuming only 305.06 seconds which is a lot less than 
the LRES at 923.96 seconds. 

The X-ray hand image in Figure 7 has size 255× 180 
pixels. The first row of Figure 7 depicts the performance 
in segmenting just the bone part. The ACWE and RSF 

almost capture the entire bone but the ACWE traces 
more skin area than the RSF. The LRAC’s contour could 
not propagate into the concave fingers and the bottom 
hand caused by a small capture range. The LRES could 
arrive only into the concave areas of the fingers. The 
information on the search line could not generate 
enough force to segment the bottom part of the hand. 
Meanwhile, our method captures the fingers with a 
larger range and the bottom area of the hand 
segmenting entire bone and excluding the skin area 
entirely. Also, we notice that the SLR’s contour spits 
excluding skin pixels on the bottom part. 

The second row of Figure 7 shows segmentation of the 
hand including skin region instead of just the bone. 
Although the sizes of the RSF’s Gaussian function and of 
the LRAC’s window are set with a large value, they 
produce similar segmentation results with the ACWE. In 
our formulation, the Gaussian function is used to 
capture any blur or smooth edge.  

Figure 7. Performance of several active contour models for bone part 

an X-ray hand image in the upper row and skin part in the lower row 

[32]. 

 

The Gaussian SLR with large sigma provides almost all 
the skin area. the RSF cannot trace the smooth boundary 
using both small and large scales Gaussian kernel. The 
RSF produces accurate segmentation using small sigma. 
With extremely large sigma, it fails to capture some 
small details. 

The Directional Scalable Local Regional (DSLR) Feature 

This subsection shows the performance of our 
directional SLR (DSLR) on real medical images. The initial 
and final contours of the positive-edge and negative-
edge objects are put on the original images in the first, 
second, and third row of Figure 8, respectively. Each 
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tested image contains several objects with different kind 
of the edge. They are the object with positive edge 
defined as a dark foreground lying on a bright 
background and the object with negative edge as a 
bright foreground on a dark background. 

The first column of Figure 8 contains two objects of 
interest, i.e., a lateral ventricle as the object with 
positive edge and a bright spot of a tumor as the object 
with negative edge. Our DSLR’s contour accurately stops 
at the two desirable boundaries using one initial 
contour. By setting 𝛽 = +1, the lateral ventricle can be 
correctly positioned. 𝛽  is set to −1  to achieve the 
boundary of the bright spot of the tumor. 

The second column of Figure 8 depicts segmentation 
results of an ultrasound image. In the second row, we 
intend to capture the womb and the baby, considered as 
the positive-edged and negative-edged objects, 
respectively. The negative value of 𝜔 helps to direct the 
contour to meet the womb. When the contour is close 
to the desired object, the force turns into the SLR force. 
Otherwise, the contour would continue to grow 
outwards ignoring the womb boundary. In the third row, 
we set 𝛽 = −1 and 𝜔 = +1 to give an inward direction 
of the contour front to capture the small baby, our 
desired negative-edged object. 

 

Figure 8. Performance of our DSLR for various medical images [37]. 

In the third column of Figure 8, the image of MRI left 
ventricle has two targeted objects. By setting 𝛽 to +1, 
the postive-edged epicardial boundary is traced as 
depicted in the second row. On the other hand, 
negative-edged endocardium can be segmented by 
letting 𝛽 be −1. The value of 𝜔 is selected to be −1 so 
that the local motion constant navigates outward to 

trace the epicardial part and 𝜔  = +1 is selected to 
propagate the contour inward to detect the 
endocardium as shown in the third row. The force turns 
into the SLR force after it covers the intended edge’s 
type pixels. 

In the fourth column of Figure 8, the two dark spots of 
the tumors are considered as two separated positive-
edge objects. They are our segmentation goal shown in 
the second row. The right part of the brain with two 
separated lumps of tumor inside is considered as the 
negative-edged object. With the benefit of level set 
implementation, our DSLR contour splits by itself and 
captures the two separated tumors properly. Also, the 
right part of the brain, our desired negative-edged 
object, can be traced accurately without any leaks into 
the tumors or the left part as shown in the third row. 

Conclusions 

An active contour method that utilizes scalable local 
regional (SLR) statistics on expandable kernels has been 
presented. The performance of our SLR active contour 
are compared with the other active contour schemes. 
Our scheme is less sensitive to noise than the other 
global models (the ACWE and the RSF). Although the RSF 
model used the Gaussian kernel, there is no significant 
difference using small or large Gaussian sigma. Our SLR 
with Gaussian function is capable in capturing the blur 
boundary. The superiority of our active contour over the 
LRAC is the ability to capture the concave boundary with 
a large range. When compared to the LRES, our method 
produces more efficient outcomes. The LRES’s search 
line could not sample the pixel intensity well, thus, the 
contour may get confused and unable to move to the 
true boundary. Moreover, the unscalability 
characteristics of the line leads to expensive 
computation. On the other hand, the scalability of the 
kernel helps to maintain its scale proportional to the 
change of image size which leads to rapid convergence. 

The experiments have verified that our SLR produces 
more satisfying and efficient segmentation results. Local 
region-based statistics makes our model robust in 
tackling noisy environment and inhomogeneous 
background. The expandable kernel enables in capturing 
the boundary concavity with a large range. Our SLR with 
Gaussian function is capable to detect the blur 
boundary. The experiments validate that our additional 
directional edge’s type selectivity feature is capable to 
extract different kind of the edges conveniently using 
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the same initial position. The scalable kernel samples 
intensity statistics appropriately deemphasizing the 
presence of noise by taking local intensity averages. The 
level set implementation allows the contour to split and 
merge when needed. 
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