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Introduction 

The numerical analysis and computational 

implementation of spring-mass-damper (SMD) 

systems present rich opportunities for investigating 

fundamental questions in dynamical systems and 

numerical methods. These systems, while 

Abstract: The numerical simulation and control of spring-mass-damper (SMD) systems offer critical insights into 
dynamical systems and computational methodologies. This study provides a comprehensive comparative analysis of 
implementing SMD systems across two prominent open-source scientific computing platforms: Python and R. By 
examining both open-loop and closed-loop system configurations, the research investigates the computational 
performance, numerical accuracy, and implementation characteristics of these platforms. Utilizing an idealized one-
dimensional SMD system with a Proportional-Integral-Derivative (PID) controller, the study conducted extensive 
numerical simulations and statistical performance analyses. Results revealed Python's significant advantages in 
execution speed, achieving up to 63.57% reduction in runtime for controlled system simulations, while R 
demonstrated superior consistency in execution and memory usage. The controlled system demonstrated exceptional 
performance, with a final position error of merely 0.4% and enhanced damping characteristics. This work not only 
bridges theoretical stability analysis with empirical performance insights but also promotes reproducibility and 
transparency in computational dynamics research by leveraging open-source platforms. 

Keywords: control systems, cross-platform implementation, numerical methods, performance analysis, spring-mass-damper 
dynamics 

Abstrak: Simulasi numerik dan pengendalian sistem pegas-massa-peredam (Spring-Mass-Damper/SMD) 
merupakan fondasi penting dalam bidang keilmuan sistem dinamis dan metodologi komputasi. Penelitian ini 
menyajikan analisis komparatif yang komprehensif mengenai implementasi sistem SMD pada dua platform 
komputasi ilmiah sumber terbuka yang terkemuka, yakni Python dan R. Melalui pengkajian konfigurasi sistem loop 
terbuka dan loop tertutup, penelitian ini menginvestigasi kinerja komputasi, akurasi numerik, dan karakteristik 
implementasi dari kedua platform tersebut. Dengan memanfaatkan sistem SMD satu dimensi yang diidealkan dengan 
pengendali Proporsional-Integral-Derivatif (PID), studi ini melakukan simulasi numerik ekstensif dan analisis kinerja 
statistik. Hasil penelitian mengungkapkan keunggulan signifikan Python dalam kecepatan eksekusi, mencapai 
pengurangan waktu eksekusi hingga 63,57% untuk simulasi sistem terkendali, sementara R menunjukkan konsistensi 
yang lebih baik dalam eksekusi dan penggunaan memori. Sistem terkendali mendemonstrasikan kinerja yang luar 
biasa, dengan kesalahan posisi akhir hanya sebesar 0,4% dan karakteristik peredaman yang ditingkatkan. Penelitian 
ini tidak hanya menjembatani analisis stabilitas teoretis dengan pandangan empiris, tetapi juga mendorong 
reproduktibilitas dan transparansi dalam penelitian dinamika komputasi dengan memanfaatkan platform  terbuka. 

Kata Kunci: sistem kendali, implementasi lintas platform, metode numerik, analisis kinerja, dinamika pegas-massa-
peredam 
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conceptually straightforward, embody essential 

characteristics of more complex dynamical systems 

and serve as valuable benchmarks for evaluating 

numerical methods and computational 

frameworks. With the rise of open science practices 

and increasing demands for research transparency 

[21], the choice of computational platforms becomes 

particularly significant in ensuring both 

mathematical rigor and reproducibility. 

The mathematical structure of SMD systems 

manifests across multiple scales of computational 

physics and engineering analysis, from simple 

mechanical oscillators to sophisticated control 

systems. Our investigation encompasses both open-

loop and closed-loop configurations, allowing us to 

examine how different numerical methods handle 

varying degrees of system complexity. In the 

current landscape, where open science platforms 

are reshaping scientific communication [22], 

implementing these systems in accessible, and 

transparent environments becomes crucial for 

validating both theoretical predictions and 

numerical approximations. 

Among open-source platforms, Python and R 

have gained significant adoption in scientific 

computing [42, 48], each offering distinct 

approaches to numerical computation and 

algorithm implementation. Contemporary scientific 

computing increasingly relies on these open-source 

platforms, which align with broader movements 

toward research transparency and reproducibility. 

Python's scientific computing ecosystem, 

built around NumPy and SciPy, exemplifies how 

open-source tools can enable sophisticated 

numerical computations while maintaining 

accessibility. The platform's implementation of 

variable-step, variable-order methods provide 

particular insight into handling stiff differential 

equations and adaptive error control. 

Similarly, R's statistical computing 

framework, particularly through packages like 

deSolve, demonstrates how community-driven 

development can produce robust tools for complex 

mathematical modeling, offering unique 

perspectives on numerical stability and error 

propagation. The computational challenges become 

particularly evident when implementing variable-

step, variable-order methods for these systems, 

especially in the context of PID control where 

system stiffness can vary significantly. 

As scientific practices evolve toward greater 

openness and accessibility [23], the ability to 

examine and validate implementation details 

becomes crucial. Both Python and R provide 

transparent implementations of numerical 

methods, allowing researchers to understand and 

verify the underlying algorithms - a key advantage 

for studying numerical stability, convergence 

properties, and error accumulation in long-time 

integration. 

The significance of this comparative study 

extends beyond mere platform evaluation, 

addressing fundamental questions in 

computational mathematics and numerical 

analysis. In an era where research integrity 

increasingly depends on computational 

reproducibility [22], understanding the relative 

strengths and limitations of different open-source 

implementations becomes crucial. 

First, the choice between Python and R affects 

not only computational performance but also 

numerical accuracy and stability, particularly in 

handling stiff systems and adaptive step size 

control. Second, as open-source platforms continue 

to evolve, systematic comparisons help inform both 

theoretical understanding of numerical methods 

and their practical implementation. 

Third, with the growing emphasis on research 

transparency, these platforms provide an ideal 

foundation for studying how different numerical 

schemes behave in both open and closed-loop 

dynamical systems, contributing to both applied 

mathematics and computational science. 

Method 

2.1 Mathematical Formulation 
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Our analysis began with an idealized one-

dimensional SMD system, consisting of a point 

mass 𝑚 =  100 kg  coupled to both an ideal linear 

spring of stiffness 𝑘 =  50 N/m and a viscous 

damper with coefficient 𝑑 =  50 Ns/m , as 

illustrated in Figure 1. The system's idealization 

encompassed several key simplifications: the mass 

behaved as a point particle devoid of rotational 

dynamics, the spring exhibited perfectly linear 

behavior following Hooke's law with negligible 

mass, the damper provided purely viscous 

damping, and the system operated in the absence of 

friction or additional constraints. All connections 

between components were considered rigid and 

massless, ensuring that the system's behavior was 

governed solely by the interplay of inertial, elastic, 

and dissipative forces. 

Figure 1. Physical representation of the idealized SMD system 

showing coordinate system and force components. The origin 

was set at the spring's equilibrium position, with positive 

displacement defined in the rightward direction. 

 

The mathematical model emerged directly 

from Newton’s Second Law, which stated that the 

sum of forces acting on the mass equalled the 

product of mass and acceleration. In our system, 

three distinct forces acted on the mass: the spring 

force (Fs = −kx(t)), the damping force proportional 

to velocity (Fd = −dẋ(t)), and an external force F(t). 

The negative signs in the spring and damping forces 

indicated their opposition to displacement and 

motion, respectively. Applying Newton’s Second 

Law and substituting these forces yielded the 

fundamental equation of motion: 

mẍ(t) = F(t) − kx(t) − dẋ(t) , (1) 

which, upon substituting our system parameters, 

became: 

100ẍ(t) = 50ẋ(t) + 50x(t) + F(t) . (2) 

To facilitate modern control analysis and 

implementation, we transformed this second-order 

differential equation into state-space form. The 

transformation introduced a state vector x(t) =

[𝑥1(𝑡), 𝑥2(𝑡)]
𝑇 , where 𝑥1 represented position and 

𝑥2 represented velocity. This choice of states 

provided clear physical insight: 𝑥1  captured the 

system's configuration while 𝑥2  described its 

instantaneous motion. The resulting state equations 

took the form: 

ẋ1 = 𝑥2, 

ẋ2 = −0.5𝑥1 − 0.5𝑥2 + 0.01𝐹(𝑡) , (3) 

which could be expressed in the canonical matrix 

form: 

[
ẋ1
ẋ2
] = [

0 1
−0.5 −0.5

]
⏟          

𝐴

[
𝑥1
𝑥2
] + [

0
0.01

]
⏟  
𝐵

𝐹(𝑡) . 

(4) 

For precise position control, we 

implemented a Proportional-Integral-Derivative 

(PID) controller with carefully tuned gains: 𝐾𝑝 =

200 N/m for proportional action, 𝐾𝑖 = 50 N/ms for 

integral action, and 𝐾𝑑 = 100 N. s/m for derivative 

action. These PID controller gains represent the 

normalized control parameters, which were scaled 

relative to the system mass of 100 kg for direct 

implementation in the state-space formulation. This 

normalization simplifies the mathematical model 

while preserving the physical interpretation of the 

controller behavior. The PID controller gains were 

systematically tuned following the frequency-

domain design methodology outlined by [20], 
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which optimizes performance based on phase and 

gain margins. Initial values were derived using the 

Ziegler-Nichols method, followed by fine-tuning to 

achieve the desired response characteristics in terms 

of settling time and overshoot for the specific SMD 

configuration.  Given a desired position trajectory 

𝑥𝑑(𝑡), the control law synthesized the input force as: 

𝐹(𝑡) = 𝐾𝑝[𝑥𝑑(𝑡) − 𝑥1(𝑡)] +

𝐾𝑖 ∫ [𝑥𝑑(𝜏) − 𝑥1(𝜏)]𝑑𝜏 + 𝐾𝑑[�̇�𝑑(𝜏) −
𝑡

0

�̇�2(𝜏)]. (5) 

The integral action in the controller necessitated 

augmenting our state space with an additional 

state variable 𝑥3 = ∫ [𝑥𝑑(𝜏) − 𝑥1(𝜏)]𝑑𝜏
𝑡

0
 

representing the accumulated position error. This 

augmentation led to the complete closed-loop 

dynamics: 

[

ẋ1
ẋ2
ẋ3

] = [
0 1 0

−2.5 −1.5 −0.5
−1 0 0

] [

𝑥1
𝑥2
𝑥3
] +

[
0
0.01
0
] 𝑥𝑑(𝜏) . 

(6) 

 The closed-loop system in equation (6) 

incorporates both the original system dynamics and 

the PID control law, where the state 𝑥3 represents 

the accumulated position error. The resulting state 

matrix reflects the augmented system dynamics 

including controller effects. The complete system 

architecture, including both open-loop and closed-

loop configurations, was illustrated in Figure 2. This 

representation explicitly showed the signal flow 

and system interconnections, highlighting the 

fundamental difference between direct force input 

and feedback control strategies. 

 
Figure 2. Block diagram representation of the SMD system: 

Open-loop configuration showing direct force input with system 

transfer function and closed-loop configuration illustrating PID 

control architecture with complete signal flow paths and transfer 

functions. 

 

2.2 Numerical Implementation 

The numerical solution of our SMD system 

required careful consideration of both accuracy and 

stability, particularly given the potential stiffness 

introduced by the control parameters. Our 

implementation leveraged the Python scientific 

computing ecosystem, specifically employing 

NumPy [24] for array operations and the Livermore 

Solver for Ordinary Differential Equations with 

Automatic method switching (LSODA) through 

SciPy's integrate module [25]. For data 

manipulation and storage of results, we utilized the 

pandas library [43], which provided efficient 

DataFrame structures for handling time series data 

and simulation outputs. 

 The core of our numerical approach lay in the 

transformation of our continuous-time system into 

a form suitable for computational solution. For the 

open-loop system, we began with the state-space 

representation derived in our mathematical 

formulation. The solver required a system model 

function that returned the state derivatives:  

𝑑

𝑑𝑡
[
𝑥1
𝑥2
] = 𝑓(𝑥, 𝑡, 𝐹) , 

(7) 
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where 𝑥 = [𝑥1, 𝑥2]
𝑇  represented our state vector, 

and 𝐹  was the input force. This formulation 

expanded to our specific parameter values: 

𝑓(𝑥, 𝑡, 𝐹) = [

𝑥2
𝐹 − 50𝑥1 − 50𝑥2

100

] .  

(8) 

 The LSODA algorithm employed an adaptive 

strategy, automatically switching between methods 

optimal for stiff and non-stiff regions of the 

solution. In numerical analysis, stiff regions of 

differential equations are characterized by solution 

components that change at vastly different rates, 

causing standard explicit methods to require 

prohibitively small step sizes for stability. In our 

SMD system, stiffness emerges particularly during 

rapid transitions in the control force and in the 

controlled system where the eigenvalue spread 

increases due to controller action. Conversely, non-

stiff regions exhibit more uniform rates of change 

across solution components, allowing larger step 

sizes without stability concerns. This distinction 

becomes especially important when simulating 

mechanical systems under high-gain feedback 

control. For non-stiff regions, it utilized Adams-

Moulton methods of orders 1-12, which took the 

general form: 

𝑥𝑛+1 = 𝑥𝑛 + ℎ∑ 𝛽𝑖f𝑛−𝑖
𝑘
𝑖=0  , 

 (9) 

where ℎ represented the step size and 𝛽𝑖  were the 

Adams-Moulton method coefficients, which are 

determined by the specific order of the method 

being used. These coefficients are derived from the 

integration of the Lagrange interpolation 

polynomials of the derivative function. For stiff 

regions, the solver switched to backward 

differentiation formulas (BDF): 

∑ 𝛼𝑖x𝑛+1−𝑖
𝑘
𝑖=0 = ℎ𝛽0f𝑛+1 , 

 (10) 

where 𝛼𝑛 and 𝛽0 were the BDF method coefficients, 

with 𝛼𝐼  controlling the weighting of previous 

solution values and 𝛽0  determining the 

contribution of the current derivative estimate. 

These coefficients are selected to optimize stability 

and accuracy properties for stiff systems. 

The simulation time domain was discretized with 

careful attention to numerical stability and accuracy 

requirements. We employed a base step size of ℎ =

0.01  seconds over a simulation interval [0, 100] 

seconds for the open-loop system and [0, 20] 

seconds for the controlled system. This 

discretization resulted in: 

𝑡𝑖 = 𝑡0 + 𝑖ℎ,   𝑖 = 0, 1,… ,𝑁 , 
 (11) 

where 𝑁 = (𝑡𝑓 − 𝑡0)/ℎ represented the total number 

of time steps. 

The input force profile was generated 

through a carefully designed transition function to 

avoid numerical artifacts. For a step input from 𝐹1to 

𝐹2  curring between times 𝑡1  and 𝑡2 , we 

implemented a linear transition: 

{

𝐹1,
𝐹1
𝐹2,
+
𝐹2 − 𝐹1
𝑡2 − 𝑡1

(𝑡 − 𝑡1),

𝑡 < 𝑡1
𝑡1 ≤ 𝑡 ≤ 𝑡2,
𝑡 > 𝑡2,

  

(12) 

where F₁ represents the initial force magnitude (0 N) 

before the transition begins at time t₁, and F₂ 

represents the final force magnitude (50 N) after the 

transition completes at time t₂. This linear transition 

in force magnitude between times t₁ = 4 s and t₂ = 5 

s provides a smooth input that avoids exciting high-

frequency dynamics that could occur with an 

instantaneous step input. 

For the closed-loop system, the numerical 

implementation became more intricate due to the 

PID control law. The augmented state vector 

[𝑥1 , 𝑥2, 𝑥3]
𝑇 required modification of our system 

model to incorporate the integral term: 

𝑓(𝑥, 𝑡, 𝑥𝑑) =

[

𝑥2
200(𝑥𝑑−𝑥1)+50𝑥3−100𝑥2−50𝑥1

100
𝑥𝑑 − 𝑥1

] . 

 

(13) 

https://www.itera.ac.id/


Original Article    

6 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067 

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R 

Sandy H. S. Herho and Siti N. Kaban 

The second component of this system incorporates 

the complete PID control law from equation (5), 

properly accounting for all gain terms and state 

variables. The term [200(𝑥𝑑 − 𝑥1) + 50𝑥3 − 100𝑥2 −

50𝑥1]/100  represents the acceleration resulting 

from the combined effect of the PID controller force 

and the system's internal forces, normalized by the 

mass. The numerical solver handled this augmented 

system with the same adaptive strategy, but special 

care was taken in the initialization and update of the 

integral term to prevent numerical drift. The 

desired position trajectory 𝑥𝑑(𝑡) followed a similar 

smooth transition profile, but with values scaled to 

position units: 𝑥𝑑,initial = 0 m  to  𝑥𝑑,final = 1 m  m 

between 𝑡1 = 2 𝑠 and 𝑡2 = 2.5 s. 

Error control in our numerical solution was 

maintained through careful monitoring of local 

truncation error at each step: 

𝐿𝑇𝐸𝑛 = ‖𝑥𝑛+1 −�̃�𝑛+1‖ ≤ 𝑡𝑜𝑙 ,  (14) 

where �̃�𝑛+1  represented a higher-order 

approximation used for error estimation. In our 

notation, subscripts refer to time discretization, not 

state components. Specifically, 𝑥𝑛  denotes the 

complete state vector at time step 𝑛 , while xₙ₊₁ 

represents the state vector at the subsequent time 

step 𝑛 + 1. The components of the state vector at 

any time step are indicated by superscripts or 

explicit notation (e.g., x₁, x₂ for position and velocity 

states). The step size was adaptively adjusted based 

on this error estimate: 

ℎ𝑛𝑒𝑤 = ℎ𝑜𝑙𝑑 (
𝑡𝑜𝑙

𝐿𝑇𝐸𝑛
)

1
𝑝

 , 
 

(15) 

with 𝑝  denoting the current method order and 

tol=10-8 as our specified tolerance. 

The complete implementation was 

organized into modular Python classes, following 

object-oriented programming principles, which 

facilitated easy modification and extension of the 

system model and control algorithms. All numerical 

computations were performed using Python, with 

NumPy, SciPy, and pandas. For comparative 

validation and robustness testing, parallel 

implementations were developed in R using the 

deSolve package [26] for differential equation 

solving and the tidyverse ecosystem [27] for data 

manipulation and visualization. The results from 

both implementations showed excellent agreement, 

providing confidence in the numerical accuracy of 

our solutions. 

2.3 Stability Analysis 

Our stability analysis methodology 

incorporated multiple theoretical frameworks to 

thoroughly assess both open-loop and closed-loop 

system behavior. Following [1], we employed three 

complementary approaches of eigenvalue analysis, 

Routh-Hurwitz criterion, and Bounded-Input, 

Bounded-Output (BIBO) stability assessment, with 

each method providing unique insights into the 

system's dynamic characteristics. 

The first stage of our analysis centered on 

eigenvalue decomposition. For a linear time-

invariant system, stability required that all 

eigenvalues had negative real parts [2]. The analysis 

began with our open-loop system matrix: 

𝐴 = [
0 1

−
𝑘

𝑚
−

𝑑

𝑚

] = [
0 1

−0.5 −0.5
] ,  

(16) 

from which we formulated the characteristic 

equation through determinant evaluation: 

det(𝑠𝐈 − 𝐀) = |
𝑠 −1
0.5 𝑠 + 0.5

| = 𝑠2 +

𝑑

𝑚
𝑠 +

𝑘

𝑚
= 𝑠2 + 0.5𝑠 + 0.5 = 0 , 

 

(17) 

 Following [3], we determined two 

fundamental parameters characterizing the 

system's behavior. The natural frequency 𝜔𝑛 

represented the system's undamped oscillation rate, 

while the damping ratio ζ characterized the decay 

rate of oscillations: 

𝜔𝑛 = √
𝑘

𝑚
= √0.5 ,  

ζ =
𝑑

2√𝑚𝑘
=

50

2√100.50
= 0.354 . 

 

(18) 
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The nature of system damping played a 

crucial role in determining the transient response 

characteristics. As derived by [1], the damping ratio 

ζ = 0.354 indicated an underdamped system, as it fell 

within the range 0 < ζ < 1. In such cases, the system's 

free response exhibited oscillatory behavior with 

exponential decay. The complete solution took the 

form: 

𝑥(𝑡) = 𝐴𝑒−ζ𝜔𝑛𝑡 cos(𝜔𝑑𝑡 + 𝜙)  (19) 

where 𝜔𝑑 = 𝜔𝑛√1− ζ2  represented the damped 

natural frequency, and 𝐴  and 𝜙  were determined 

by initial conditions. This underdamped 

characteristic arose from our physical parameters, 

with the mass-spring-damper combination 

producing complex conjugate eigenvalues 𝜆1,2 =

− ζ𝜔𝑛 ± 𝑖𝜔𝑑 = −0.25 ± 0.661𝑖. 

 Asymptotic stability analysis followed the 

theoretical framework of [2], which required 

examination of the system's long-term behavior as 

𝑡 → ∞. For our linear system, asymptotic stability 

demanded that all eigenvalues had strictly negative 

real parts. The real component of our eigenvalues, 

−ζ𝜔𝑛 = −0.25, being negative, ensured exponential 

decay of any initial conditions or disturbances. This 

stability manifested through the exponential term 

𝑒−ζ𝜔𝑛𝑡   in the system response, which approached 

zero as time increased. 

 The Routh-Hurwitz stability criterion [4] 

provided an algebraic method for determining 

stability without explicit eigenvalue calculation. For 

our second-order characteristic equation: 

𝑎2𝑠
2 + 𝑎1𝑠 + 𝑎0 = 𝑠

2 + 0.5𝑠 + 0.5 = 0 , 
 (20) 

we constructed the Routh array and examined its 

first column entries: 

𝑠2

𝑠1

𝑠0
|
1 0.5
0.5 0
0.5

 .  

(21) 

 The stability conditions derived from the 

Routh array required all elements in its first column 

to be positive. Following [5], this translated to the 

requirements 𝑎2 > 0 , 𝑎1 > 0 , and 𝑎0 > 0 , which 

were all satisfied in our system, confirming stability 

from an algebraic perspective. 

The BIBO stability assessment followed [6] 

methodology, focusing on the system's transfer 

function: 

𝐺(𝑠) =
1

𝑚𝑠2+𝑑𝑠+𝑘
=

0.01

𝑠2+0.5𝑠+0.5
 .  (22) 

This approach required examination of both 

the positivity of denominator coefficients and the 

Hurwitz stability of the denominator polynomial. 

Our transfer function satisfied both conditions, as 

all denominator coefficients were positive and 

matched the previously analyzed characteristic 

equation. 

For the closed-loop analysis with PID 

control, we extended these methodologies to the 

augmented third-order system. The characteristic 

equation expanded to include controller 

parameters: 

𝑠3 +
𝑑+𝐾𝑑

𝑚
𝑠2 +

𝑘+𝐾𝑝

𝑚
𝑠 +

𝐾𝑖

𝑚
= 0 ,  (23) 

necessitating an expanded Routh array for stability 

analysis: 

𝑠3 1 𝑘 + 𝐾𝑝

𝑚
 

𝑠2 𝑑 +𝐾𝑑
𝑚

 
𝐾𝑖
𝑚

 

𝑠1 (𝑑 + 𝐾𝑑)(𝑘 + 𝐾𝑝) − 𝑚𝐾𝑖

𝑚(𝑑 + 𝐾𝑑)
 

0 

𝑠0 𝐾𝑖
𝑚

 
 

 

. 

(24) 

The relationship between damping and 

asymptotic stability was further illuminated 

through the root locus analysis detailed by [5]. The 

characteristic equation roots, or system poles, lying 

in the left half of the complex plane (Re (𝜆)< 0) 

guaranteed that any oscillations would eventually 

decay. The distance of these poles from the 

imaginary axis, determined by ζ𝜔𝑛 , dictated the 
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decay rate, while their imaginary components ±𝜔𝑑  

determined the oscillation frequency. 

The robustness of our closed-loop system 

was examined through the method of [7], which 

analyzed the loop transfer function: 

𝐿(𝑠) =
𝐾𝑝𝑠

2 +𝐾𝑑𝑠 + 𝐾𝑖

𝑠(𝑚𝑠2 + 𝑑𝑠 + 𝑘)
 .  

(25) 

The robustness analysis of our closed-loop 

system using the loop transfer function provided 

quantitative stability margins, indicating the 

system's tolerance to gain and phase variations 

before instability occurs. The calculated gain and 

phase margins demonstrated that our PID 

controller design provides sufficient robustness 

against modeling uncertainties, parameter 

variations, and external disturbances. The stability 

margins derived from this transfer function offered 

a direct measure of the control system's resilience, 

confirming that the designed controller achieves 

both performance objectives and stability 

robustness for the spring-mass-damper system 

under consideration. The transfer function 

(equation 15) formed the basis for determining 

critical frequency-domain stability margins, 

providing insight into the system's robustness 

against parameter variations and modeling 

uncertainties. The stability margins derived from 

this transfer function offered quantitative measures 

of how much gain variation and phase shift the 

system could tolerate while maintaining stability. 

2.3 Statistical Framework for Performance 

Analysis 

 Building upon the system dynamics 

simulation framework described before, we 

developed and implemented a comprehensive 

statistical analysis approach to compare the 

performance characteristics of Python and R 

implementations. All experiments were conducted 

on a ThinkPad P52s laptop running Fedora Linux 39 

(Budgie) x86_64, equipped with an Intel i7-8550U 

processor (8 threads, 4.000GHz). Given that our 

numerical simulations primarily involved CPU-

bound computations without parallel processing 

requirements, this standard laptop configuration 

provided an adequate testing environment 

representative of typical scientific computing setups 

in practice. 

Our analysis pipeline utilized Python's 

scientific computing stack, including NumPy for 

numerical computations [24], SciPy for statistical 

testing [25], pandas for data management [43], and 

Seaborn for statistical visualization [28]. Following 

established practices in performance evaluation [29] 

and statistical sampling theory [8], we collected 𝑛 =

1000 measurements for each implementation type 

𝑖 ∈ controlled, open and language  𝑗 ∈ [Python, R] 

after discarding 𝑘 = 5 warm-up runs. These warm-

up runs were essential to mitigate the effects of just-

in-time compilation and cache warming, as 

demonstrated by Herho et al. [30, 31, 32]. 

 Our analysis began with fundamental 

statistical measures for each implementation-

language pair (𝑖, 𝑗) . Following the 

recommendations of Jain [9] for computer systems 

performance analysis, we computed the central 

tendency and dispersion metrics: 

𝜇𝑖,𝑗 =
1

𝑛
∑ 𝑋𝑖,𝑗,𝑘
𝑛
𝑘=1  ,  (26) 

where 𝜇𝑖,𝑗  represents the mean performance 

measure, n is the number of observations, and 𝑋𝑖,𝑗,𝑘 

is the 𝑘 − 𝑡ℎ  performance measurement for 

implementation 𝑖 and language 𝑗. 

𝜒𝑖,𝑗 = √
1

𝑛−1
∑ (𝑋𝑖,𝑗,𝑘 − 𝜇𝑖,𝑗)

2𝑛
𝑘=1  ,  

(27) 

where 𝜒𝑖,𝑗 denotes the standard deviation of the 

performance measurements. 

𝜂𝑖,𝑗 =
𝜒𝑖,𝑗

𝜇𝑖,𝑗
× 100% ,  

(28) 

where 𝜂𝑖,𝑗 represents the coefficient of variation. 

 The coefficient of variation in Equation [34] 

proved particularly valuable for performance 

comparisons, as it provided a dimensionless 

measure of variability [10]. Following [11] and 



  Original Article 

Copyright © 2025 – Indonesian Journal of Applied Mathematics   9 

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) 

Institut Teknologi Sumatera, Lampung Selatan, Indonesia 

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26 

recent performance analysis guidelines [33], we 

interpreted 𝜂  below 5% as very consistent 

performance, 5-10% as good consistency, 10-15% as 

moderate variability, and above 15% as high 

variability. 

 Distribution shape analysis was crucial for 

understanding performance characteristics and 

selecting appropriate statistical tests [12]. We 

computed skewness 𝛾1 and kurtosis 𝛾2: 

𝛾1 =
1

𝑛
∑

(𝑋𝑖,𝑗,𝑘−𝜇𝑖,𝑗)
3

𝜒𝑖,𝑗
3

𝑛
𝑘=1  ,  

(29) 

where 𝛾1  represents the skewness of the 

distribution, providing a measure of asymmetry in 

the performance data. Positive skewness indicates a 

right-tailed distribution with occasional high 

outliers, while negative skewness suggests left-

tailed distributions with occasional low values 

𝛾2 =
1

𝑛
∑

(𝑋𝑖,𝑗,𝑘−𝜇𝑖,𝑗)
4

𝜒𝑖,𝑗
4

𝑛
𝑘=1 − 3 ,  

(30) 

where 𝛾2  represents the excess kurtosis of the 

distribution. These shape parameters were essential 

for detecting potential performance anomalies and 

understanding the underlying performance 

distribution patterns, helping us identify non-

standard characteristics in execution time and 

memory usage distributions across 

implementations [13]. 

 The normality of distributions was assessed 

using both Shapiro-Wilk and Kolmogorov-Smirnov 

tests, as recommended by [34] for their 

complementary strengths in different sample sizes 

and distribution types: 

𝑊 =
(∑ 𝛼𝑖𝑥(𝑖)
𝑛
𝑖=1 )

2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

 ,  
(31) 

where 𝑊 is the Shapiro-Wilk test statistic, 𝑥(𝑖) (with 

parenthetical index) represents ordered sample 

values arranged in ascending order, distinct from x ᵢ 

which denotes the raw sample values or state 

variables elsewhere in this paper. The constants a ᵢ 

are derived from the covariance matrix of order 

statistics, and �̅� is the sample mean. 

𝐷𝑛 = 𝑠𝑢𝑝
𝑥
|𝐹𝑛(𝑥) − 𝐹(𝑥)| ,  

(32) 

where 𝐷𝑛 is the Kolmogorov-Smirnov test statistic, 

𝐹𝑛(𝑥)  is the empirical distribution function, and 

𝐹(𝑥) is the theoretical normal distribution. 

 For comparing Python and R 

implementations, we employed non-parametric 

tests due to their robustness against violations of 

normality assumptions [14]. The Wilcoxon signed-

rank test [35] was used for paired comparisons: 

𝑊 = ∑ [𝑠𝑔𝑛(𝑥2,𝑟 − 𝑥1,𝑟). 𝑅𝑟]
𝑛𝑟
𝑟=1  , 

 (33) 

where 𝑊  is the test statistic, 𝑛𝑟  is the number of 

non-zero differences between paired samples, 𝑠𝑔𝑛 

is the sign function that returns +1, 0, or -1 according 

to the sign of its argument, and 𝑅𝑟  is the rank of the 

absolute difference. In this context, 𝑥2,𝑟  and 𝑥2,𝑟  

represent the 𝑟-th pair of observations from the two 

compared implementation methods (Python and 

R). This paired comparison directly quantifies the 

significance of performance differences between 

implementations.   

 This was complemented by Levene's test [44] 

for assessing variance homogeneity, chosen for its 

robustness against non-normality [36]: 

Λ =
(𝑁−𝑘)

(𝑘−1)

∑ 𝑁𝑖(𝑍𝑖.−𝑍..)
2𝑛

𝑖=1

∑ ∑ (𝑍𝑖𝑗−𝑍𝑖.)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1

 ,  
(34) 

where Λ  is the test statistic, 𝑁  is the total sample 

size, 𝑘 is the number of groups, 𝑁𝑖 is the sample size 

of the 𝑖-th group, 𝑍𝑖𝑗 = |𝑋𝑖𝑗  −  𝑋𝑖| being the group 

median, 𝑍𝑖. represents group means of the 𝑍𝑖𝑗 , and 

𝑍.. is the overall mean of 𝑍𝑖𝑗 . 

 Following modern statistical practice [37], we 

complemented significance testing with effect size 

analysis using Cohen's d [15]: 

https://www.itera.ac.id/
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𝛿 =
𝜇𝑃𝑦𝑡ℎ𝑜𝑛−𝜇𝑅

√
𝜒𝑃𝑦𝑡ℎ𝑜𝑛
2 +𝜒𝑅

2

2

 ,  

(35) 

where 𝛿  is Cohen's d effect size measure, 𝜇𝑃𝑦𝑡ℎ𝑜𝑛 

and 𝜇𝑅  are the means of Python and R 

implementations respectively, and 𝜒𝑃𝑦𝑡ℎ𝑜𝑛
2  and 𝜒𝑅

2 

are their respective variances. 

 This measure provided a standardized 

assessment of practical significance, with effect 

sizes interpreted according to established 

guidelines [38] as negligible (|𝛿| < 0.2) , small 

(0.2 ≤ |𝛿| < 0.5), medium (0.5 ≤ |𝛿| < 0.8), or large 

(|𝛿| ≥ 0.8). 

 Performance anomalies were identified using 

a robust multi-method approach [16], combining 

three complementary detection methods as 

recommended by Chandola et al. [39]. The 

traditional Z-score method: 

|ζ| = |
𝑥−𝜇

𝜒
| > 3.5 ,  

(36) 

where |ζ|  is the absolute Z-score, 𝑥   is the 

observation value, 𝜇  is the mean, and 𝜒  is the 

standard deviation. 

 This was supplemented by the modified Z-

score using median absolute deviation, which 

offered greater robustness against multiple outliers 

[40]: 

|ζ𝑚𝑜𝑑| = |
0.6745(𝑥−𝑚𝑒𝑑𝑖𝑎𝑛)

𝑀𝐴𝐷
| > 3.5 ,  (37) 

where |ζ𝑚𝑜𝑑| is the modified Z-score, MAD is the 

median absolute deviation, and 0.6745 is the 

normalization constant. 

 The interquartile range method provided a 

distribution-free approach [17]: 

𝑥 < Q1 − 1.5𝐼𝑄𝑅 𝑜𝑟 𝑥 > Q3 + 1.5𝐼𝑄𝑅 , 
 (38) 

where Q1  and Q3  are the first and third quartiles 

respectively, and IQR is the interquartile range. 

 The final set of anomalies 𝒜 was determined 

through consensus voting [18]: 

𝒜 = 𝒜ζ ∪𝒜mod ∪𝒜𝐼𝑄𝑅  , 
 (39) 

where 𝒜ζ , 𝒜mod , and 𝒜𝐼𝑄𝑅  represent the sets of 

anomalies identified by the Z-score, modified Z-

score, and IQR methods respectively. 

 This statistical framework described in 

Equations (26)-(39) provided a rigorous foundation 

for comparing performance characteristics between 

implementations, adhering to established practices 

in both statistical methodology and performance 

analysis [41]. All numerical results were 

standardized to three decimal places for consistency 

in technical reporting, as recommended by [19] for 

reproducible research practices. 

Results And Discussion 

3.1 System Dynamics 

The SMD system exhibited complex dynamic 

behavior characteristic of underdamped second-

order mechanical systems, as evidenced by both 

mathematical stability analysis and numerical 

simulations. Figure 3 illustrates the system's 

temporal evolution under a step force input, while 

Figure 4 provides insight into the system's state-

space behavior through its phase portrait. 

 The eigenvalue analysis revealed complex 

conjugate poles at −0.25 ±  0.661𝑖, mathematically 

confirming the system's underdamped nature. This 

finding aligns with the calculated damping ratio 

𝜁 = 0.354 , indicating oscillatory behavior with 

gradual energy dissipation. The characteristic 

equation coefficients [1, 0.5, 0.5] satisfied stability 

criteria across multiple analytical frameworks, 

including eigenvalue, Routh-Hurwitz, and BIBO 

stability analyses. 
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Figure 3. Temporal evolution of the open-loop system response 

to a 50 N step input. From top to bottom: (a) Applied force 

showing the transition from 0 to 50 N between t = 4 s and t = 5 s, 

(b) Position response demonstrating underdamped oscillations 

converging to 1.000 m, (c) Velocity profile reaching a maximum 

of 0.4 m/s before dampened oscillations to zero, and (d) 

Acceleration response highlighting the system's dynamic 

behavior with peak values of ± 0.2 m/s2. 

 

As shown in Figure 3, the system response to 

the step input force demonstrates characteristic 

underdamped behavior. The position response 

(Figure 3b) shows an initial overshoot followed by 

decaying oscillations before settling to its final value 

of 1 m. The velocity profile (Figure 3c) exhibits a 

maximum speed of 0.4 m/s during the initial 

response phase, with subsequent oscillations 

diminishing as the system approaches equilibrium. 

The acceleration response (Figure 3d) shows sharp 

transitions corresponding to the force application, 

with peak values of approximately ±0.2 m/s2. 

The phase portrait in Figure 4 provides 

additional insight into the system's dynamic 

behavior. The spiral trajectory illustrates the 

system's evolution from its initial state at the origin 

to its final equilibrium point at (1 m, 0 m/s). The 

decreasing radius of the spiral confirms the system's 

stability and energy dissipation through damping, 

while the elliptical shape of the trajectory reflects 

the continuous exchange between potential and 

kinetic energy characteristic of spring-mass 

systems. The simulation results confirm the 

theoretical stability predictions, with the system 

achieving its expected final state: position at 1 m, 

velocity at 0 m/s, and acceleration at 0 m/s2. 

 

 
Figure 4. Phase portrait of the open-loop system showing the 

relationship between position and velocity. The spiral trajectory, 

beginning from the origin and converging to the equilibrium 

point (1 m, 0 m/s), illustrates the system's stable focus behavior. 

The decreasing spiral radius demonstrates the energy dissipation 

through damping, while the elliptical shape reflects the 

interchange between potential and kinetic energy. 

 

The implementation of PID control 

significantly enhanced the system's performance 

characteristics, introducing more sophisticated 

dynamic behavior while maintaining stability. 

Figure 5 presents the comprehensive closed-loop 

system response, while Figure 6 illustrates the 
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controlled system's state-space behavior through its 

phase portrait. 

 

Figure 5. Closed-loop system response with PID control. From 

top to bottom: (a) Position tracking showing desired (dashed red) 

and actual (solid blue) trajectories, demonstrating effective 

reference tracking, (b) Control force profile exhibiting initial peak 

of 259.2 N followed by smooth regulation, (c) Position error 

evolution showing maximum deviation of 0.107 m and final error 

of 0.004 m, (d) Velocity response with peak of 1.04 m/s, and (e) 

Acceleration profile with maximum of 2.14 m/s2. 

 

The closed-loop stability analysis revealed a 

richer pole constellation compared to the open-loop 

system, with eigenvalues at -0.5 and -0.25 ± 0.661𝑖. 

The additional real pole at -0.5, introduced by the 

controller, enhanced the system's damping 

characteristics, as evidenced by the increased 

damping ratio of 𝜁 = 0.474 compared to the open-

loop value of 0.354. The characteristic equation 

coefficients [1, 1.5, 2.5, 0.5] maintained stability 

across all analytical criteria while enabling 

improved transient response. 

The controlled system demonstrated superior 

performance metrics, as shown in Figure 5. The 

position tracking (Figure 5a) achieved a steady-state 

value of 0.996 m, resulting in a final position error 

of only 0.004 m (0.4%). The maximum overshoot of 

0.107 m (10.7%) occurred during the initial transient 

response, while the settling time of 12.8 seconds 

represented a significant improvement over the 

open-loop behavior. The control force profile 

(Figure 5b) showed an initial peak of 259.2 N, 

necessary for rapid response, before settling to a 

steady-state value that maintained the desired 

position. 

 

Figure 6. Phase portrait of the closed-loop system illustrating the 

controlled state-space trajectory. The smooth path from initial 

conditions to the desired setpoint (1.0 m, 0 m/s) demonstrates the 

controller's ability to regulate both position and velocity 

simultaneously. The absence of multiple spirals indicates 

improved damping compared to the open-loop response. 

 

The phase portrait in Figure 6 reveals the 

effectiveness of the control strategy in managing the 

system's states trajectory. Unlike the open-loop 

case, the controlled system exhibits a more direct 

path to the desired equilibrium point, with the 

controller actively shaping the system's dynamic 

behavior. The single, well-defined trajectory 

indicates effective energy management by the 

controller, avoiding the multiple oscillations 

characteristic of the uncontrolled response. 
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The RMS position error of 0.124 m provides a 

quantitative measure of tracking performance 

throughout the entire operation. The maximum 

speed of 1.04 m/s and acceleration of 2.14 m/s2 

demonstrate the controller's ability to generate 

aggressive yet controlled motions when necessary 

while maintaining system stability. These 

performance metrics validate the theoretical design 

of the PID controller with gains Kp = 200 N/m, Ki = 

50 N/(ms), and Kd = 100 Ns/m. 

 

3.2 Performance Analysis 

Our statistical analysis revealed nuanced and 

significant differences between Python and R 

implementations across all metrics and scenarios, 

evaluated through 1,000 iterations per test. The 

results show a complex interplay of execution time, 

memory usage, and stability across controlled and 

open-loop systems, highlighting the strengths and 

weaknesses of each platform in scientific computing 

workflows. 

Python demonstrated substantial advantages 

in execution time performance. In controlled 

systems, Python achieved a mean execution time of 

2.037 seconds (σ = 0.337), significantly 

outperforming R, which recorded a mean of 5.591 

seconds (σ = 0.514). This reduction of 63.566% was 

statistically significant, confirmed by the Wilcoxon 

signed-rank test (p < 0.001, d = -8.175). However, 

Python’s performance came at the cost of higher 

variability (CV = 16.553%, categorized as "High 

variability"), while R showed more consistent 

execution times (CV = 9.201%, "Good consistency"). 

Figure 7, left panel, illustrates this contrast with 

Python exhibiting a broader distribution than R. 

In open-loop implementations, Python 

retained its performance edge with a mean 

execution time of 3.103 seconds (σ = 0.473) 

compared to R’s 4.223 seconds (σ = 0.667). Although 

the margin of improvement was reduced to 

26.517%, the difference remained statistically 

significant (p < 0.001, d = -1.939). Both platforms 

exhibited high variability in this scenario (Python 

CV = 15.227%, R CV = 15.784%). Levene’s test 

further confirmed significant variance differences (F 

= 13.157, p < 0.001). The right panel of Figure 7 

highlights these trends, showing Python’s faster, 

albeit more variable, performance relative to R. 

Memory usage patterns presented a 

contrasting narrative. In controlled systems, Python 

consumed slightly more memory, with a mean of 

125.461 MB (σ = 0.217) compared to R’s 123.583 MB 

(σ = 0.139), marking a 1.519% increase. This 

difference was statistically significant (p < 0.001) 

with a large effect size (d = 10.305). However, both 

platforms demonstrated exceptional stability, as 

reflected by CV values of 0.173% for Python and 

0.112% for R. These results suggest that Python’s 

higher baseline interpreter memory footprint 

accounts for the slight difference. 

 

Figure 7. Violin plots of execution time distributions for Python 

and R under controlled and open-loop implementations. The left 

panel represents controlled implementations, while the right 

panel shows open-loop implementations. 

 

In open-loop systems, memory usage 

between the platforms converged. Python recorded 

a mean of 132.965 MB (σ = 0.224), while R reached 

133.020 MB (σ = 0.112). The negligible difference of 

-0.042% was statistically significant (p < 0.001), 

though with a small effect size (d = -0.312), 

indicating practical equivalence. Both 

implementations maintained highly consistent 

memory utilization, with CV values below 0.2%. 

Figure 8, right panel, illustrates this near-parity in 

memory usage distributions. 
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Figure 8. Violin plots of memory usage distributions for Python 

and R under controlled and open-loop implementations. The left 

panel represents controlled implementations, while the right 

panel shows open-loop implementations. 

 

Distribution shape analysis provided 

additional insights. Execution time data showed 

significant right skewness in both platforms, with 

Python exhibiting skewness ≥ 1.094 and R 

exceeding 3.369 in controlled implementations. 

Non-normality tests (Shapiro-Wilk p < 0.001) 

confirmed deviations from Gaussian behavior, as 

shown by broader tails in Figure 7. Memory usage 

data, on the other hand, displayed symmetric or 

moderately skewed distributions depending on the 

scenario, reflecting greater consistency in resource 

allocation. 

Anomaly counts varied significantly across 

configurations. For controlled execution times, 

Python recorded a high anomaly rate (33.0% of 

data) compared to R’s 10.6%, reflecting the 

variability induced by Python’s dynamic 

optimization strategies. Conversely, in open-loop 

memory usage, R exhibited more anomalies (1.8%) 

compared to Python’s 0.4%, underscoring R’s 

sensitivity to subtle system conditions in memory-

intensive scenarios. 

Overall, Python’s execution speed makes it 

ideal for computationally intensive tasks, especially 

in controlled systems where performance is critical. 

However, its variability and higher anomaly rates 

suggest careful consideration for applications 

requiring extreme precision and stability. R’s 

strength lies in its consistent memory usage and 

lower variability, making it a better choice for 

scenarios where stability and resource 

predictability are paramount. These results 

underscore the importance of aligning platform 

selection with specific computational requirements 

to optimize performance and efficiency. 

For example, Masini and Bientinesi [43] 

emphasizes Python’s broader ecosystem and 

optimization strategies as critical for scalable 

applications, while Raschka et al. [44] highlight R’s 

robustness for statistical workflows. These findings 

align with earlier research by Watson et al. [45], 

suggesting platform-specific trade-offs in 

computational reliability. 

Conclusions  

This study provides a comprehensive 

evaluation of Python and R for simulating and 

controlling SMD systems, with a focus on 

computational performance and numerical 

accuracy. Python exhibited a clear advantage in 

execution speed, achieving reductions of up to 

63.57% in mean runtime compared to R in 

controlled system simulations. However, this 

efficiency came with trade-offs, including higher 

variability in execution times and a greater anomaly 

rate, reflecting the platform's dynamic optimization 

strategies. Conversely, R demonstrated superior 

consistency in execution and memory usage, 

making it more suitable for scenarios prioritizing 

stability and resource predictability. These findings 

underscore the distinct strengths of each platform 

and the importance of selecting the right tool for 

specific computational needs. 

It is important to note that while Python and 

R demonstrated significant differences in 

computational performance, these differences did 

not affect the physical behavior or stability 

characteristics of the simulated system. Both 

platforms produced identical system dynamics 

when using the same numerical solver (LSODA) 

with equivalent tolerance settings, confirming that 

the 63.57% execution speed advantage of Python 

represents purely computational efficiency rather 

than differences in simulation accuracy or dynamic 

response. The time required for the controlled 
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system to reach stability (approximately 12.8 

seconds) remained consistent across both 

implementations, validating the platform-

independent nature of the underlying mathematical 

model. This consistency in physical results despite 

performance differences further strengthens our 

confidence in the robustness of both 

implementations for scientific computing 

applications. 

The implementation of PID control 

significantly enhanced system dynamics, yielding 

improved position tracking and stability. With a 

final position error of just 0.4% and enhanced 

damping characteristics, the controlled system 

achieved superior performance metrics over the 

open-loop configuration. The controlled system's 

steady-state precision and reduced settling time 

validate the PID controller's design and its 

effectiveness in managing transient responses. 

Overall, this work bridges theoretical stability 

analysis with empirical performance insights, 

providing a valuable resource for researchers in 

computational dynamics and control systems. By 

leveraging the capabilities of open-source 

platforms, this research promotes reproducibility 

and transparency in the numerical study of 

dynamic systems. 
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