
Original Article

 Indonesian Journal of Applied Mathematics , vol. 05, no. 01 (2025) | 1

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

e-ISSN: 2774-2016 - https://journal.itera.ac.id/index.php/indojam/

p-ISSN: 2774-2067

Copyright © 2025 – Indonesian Journal of Applied Mathematics.
Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial 4.0 International Licence. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Indonesian Journal of Applied
Mathematics.

Received 13th January 2025
Accepted 9th April 2025

Published 25th April 2025

DOI:
https://doi.org/10.35472/indoja

m.v5i1.2104

Quantitative Performance Analysis of Spring-Mass-

Damper Control Systems: A Comparative

Implementation in Python and R

Sandy H. S. Herho *a, Siti N. Kaban b

a Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA

b Offshore Engineering Research Group, Bandung Institute of Technology (ITB), Bandung, Indonesia

* Corresponding E-mail: sandy.herho@email.ucr.edu

Introduction

The numerical analysis and computational

implementation of spring-mass-damper (SMD)

systems present rich opportunities for investigating

fundamental questions in dynamical systems and

numerical methods. These systems, while

Abstract: The numerical simulation and control of spring-mass-damper (SMD) systems offer critical insights into
dynamical systems and computational methodologies. This study provides a comprehensive comparative analysis of
implementing SMD systems across two prominent open-source scientific computing platforms: Python and R. By
examining both open-loop and closed-loop system configurations, the research investigates the computational
performance, numerical accuracy, and implementation characteristics of these platforms. Utilizing an idealized one-
dimensional SMD system with a Proportional-Integral-Derivative (PID) controller, the study conducted extensive
numerical simulations and statistical performance analyses. Results revealed Python's significant advantages in
execution speed, achieving up to 63.57% reduction in runtime for controlled system simulations, while R
demonstrated superior consistency in execution and memory usage. The controlled system demonstrated exceptional
performance, with a final position error of merely 0.4% and enhanced damping characteristics. This work not only
bridges theoretical stability analysis with empirical performance insights but also promotes reproducibility and
transparency in computational dynamics research by leveraging open-source platforms.

Keywords: control systems, cross-platform implementation, numerical methods, performance analysis, spring-mass-damper
dynamics

Abstrak: Simulasi numerik dan pengendalian sistem pegas-massa-peredam (Spring-Mass-Damper/SMD)
merupakan fondasi penting dalam bidang keilmuan sistem dinamis dan metodologi komputasi. Penelitian ini
menyajikan analisis komparatif yang komprehensif mengenai implementasi sistem SMD pada dua platform
komputasi ilmiah sumber terbuka yang terkemuka, yakni Python dan R. Melalui pengkajian konfigurasi sistem loop
terbuka dan loop tertutup, penelitian ini menginvestigasi kinerja komputasi, akurasi numerik, dan karakteristik
implementasi dari kedua platform tersebut. Dengan memanfaatkan sistem SMD satu dimensi yang diidealkan dengan
pengendali Proporsional-Integral-Derivatif (PID), studi ini melakukan simulasi numerik ekstensif dan analisis kinerja
statistik. Hasil penelitian mengungkapkan keunggulan signifikan Python dalam kecepatan eksekusi, mencapai
pengurangan waktu eksekusi hingga 63,57% untuk simulasi sistem terkendali, sementara R menunjukkan konsistensi
yang lebih baik dalam eksekusi dan penggunaan memori. Sistem terkendali mendemonstrasikan kinerja yang luar
biasa, dengan kesalahan posisi akhir hanya sebesar 0,4% dan karakteristik peredaman yang ditingkatkan. Penelitian
ini tidak hanya menjembatani analisis stabilitas teoretis dengan pandangan empiris, tetapi juga mendorong
reproduktibilitas dan transparansi dalam penelitian dinamika komputasi dengan memanfaatkan platform terbuka.

Kata Kunci: sistem kendali, implementasi lintas platform, metode numerik, analisis kinerja, dinamika pegas-massa-
peredam

Open Access

https://journal.itera.ac.id/index.php/indojam/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:sandy.herho@email.ucr.edu

Original Article

2 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

conceptually straightforward, embody essential

characteristics of more complex dynamical systems

and serve as valuable benchmarks for evaluating

numerical methods and computational

frameworks. With the rise of open science practices

and increasing demands for research transparency

[21], the choice of computational platforms becomes

particularly significant in ensuring both

mathematical rigor and reproducibility.

The mathematical structure of SMD systems

manifests across multiple scales of computational

physics and engineering analysis, from simple

mechanical oscillators to sophisticated control

systems. Our investigation encompasses both open-

loop and closed-loop configurations, allowing us to

examine how different numerical methods handle

varying degrees of system complexity. In the

current landscape, where open science platforms

are reshaping scientific communication [22],

implementing these systems in accessible, and

transparent environments becomes crucial for

validating both theoretical predictions and

numerical approximations.

Among open-source platforms, Python and R

have gained significant adoption in scientific

computing [42, 48], each offering distinct

approaches to numerical computation and

algorithm implementation. Contemporary scientific

computing increasingly relies on these open-source

platforms, which align with broader movements

toward research transparency and reproducibility.

Python's scientific computing ecosystem,

built around NumPy and SciPy, exemplifies how

open-source tools can enable sophisticated

numerical computations while maintaining

accessibility. The platform's implementation of

variable-step, variable-order methods provide

particular insight into handling stiff differential

equations and adaptive error control.

Similarly, R's statistical computing

framework, particularly through packages like

deSolve, demonstrates how community-driven

development can produce robust tools for complex

mathematical modeling, offering unique

perspectives on numerical stability and error

propagation. The computational challenges become

particularly evident when implementing variable-

step, variable-order methods for these systems,

especially in the context of PID control where

system stiffness can vary significantly.

As scientific practices evolve toward greater

openness and accessibility [23], the ability to

examine and validate implementation details

becomes crucial. Both Python and R provide

transparent implementations of numerical

methods, allowing researchers to understand and

verify the underlying algorithms - a key advantage

for studying numerical stability, convergence

properties, and error accumulation in long-time

integration.

The significance of this comparative study

extends beyond mere platform evaluation,

addressing fundamental questions in

computational mathematics and numerical

analysis. In an era where research integrity

increasingly depends on computational

reproducibility [22], understanding the relative

strengths and limitations of different open-source

implementations becomes crucial.

First, the choice between Python and R affects

not only computational performance but also

numerical accuracy and stability, particularly in

handling stiff systems and adaptive step size

control. Second, as open-source platforms continue

to evolve, systematic comparisons help inform both

theoretical understanding of numerical methods

and their practical implementation.

Third, with the growing emphasis on research

transparency, these platforms provide an ideal

foundation for studying how different numerical

schemes behave in both open and closed-loop

dynamical systems, contributing to both applied

mathematics and computational science.

Method

2.1 Mathematical Formulation

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 3

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

Our analysis began with an idealized one-

dimensional SMD system, consisting of a point

mass 𝑚 = 100 kg coupled to both an ideal linear

spring of stiffness 𝑘 = 50 N/m and a viscous

damper with coefficient 𝑑 = 50 Ns/m , as

illustrated in Figure 1. The system's idealization

encompassed several key simplifications: the mass

behaved as a point particle devoid of rotational

dynamics, the spring exhibited perfectly linear

behavior following Hooke's law with negligible

mass, the damper provided purely viscous

damping, and the system operated in the absence of

friction or additional constraints. All connections

between components were considered rigid and

massless, ensuring that the system's behavior was

governed solely by the interplay of inertial, elastic,

and dissipative forces.

Figure 1. Physical representation of the idealized SMD system

showing coordinate system and force components. The origin

was set at the spring's equilibrium position, with positive

displacement defined in the rightward direction.

The mathematical model emerged directly

from Newton’s Second Law, which stated that the

sum of forces acting on the mass equalled the

product of mass and acceleration. In our system,

three distinct forces acted on the mass: the spring

force (Fs = −kx(t)), the damping force proportional

to velocity (Fd = −dẋ(t)), and an external force F(t).

The negative signs in the spring and damping forces

indicated their opposition to displacement and

motion, respectively. Applying Newton’s Second

Law and substituting these forces yielded the

fundamental equation of motion:

mẍ(t) = F(t) − kx(t) − dẋ(t) , (1)

which, upon substituting our system parameters,

became:

100ẍ(t) = 50ẋ(t) + 50x(t) + F(t) . (2)

To facilitate modern control analysis and

implementation, we transformed this second-order

differential equation into state-space form. The

transformation introduced a state vector x(t) =

[𝑥1(𝑡), 𝑥2(𝑡)]
𝑇 , where 𝑥1 represented position and

𝑥2 represented velocity. This choice of states

provided clear physical insight: 𝑥1 captured the

system's configuration while 𝑥2 described its

instantaneous motion. The resulting state equations

took the form:

ẋ1 = 𝑥2,

ẋ2 = −0.5𝑥1 − 0.5𝑥2 + 0.01𝐹(𝑡) , (3)

which could be expressed in the canonical matrix

form:

[
ẋ1
ẋ2
] = [

0 1
−0.5 −0.5

]
⏟

𝐴

[
𝑥1
𝑥2
] + [

0
0.01

]
⏟
𝐵

𝐹(𝑡) .

(4)

For precise position control, we

implemented a Proportional-Integral-Derivative

(PID) controller with carefully tuned gains: 𝐾𝑝 =

200 N/m for proportional action, 𝐾𝑖 = 50 N/ms for

integral action, and 𝐾𝑑 = 100 N. s/m for derivative

action. These PID controller gains represent the

normalized control parameters, which were scaled

relative to the system mass of 100 kg for direct

implementation in the state-space formulation. This

normalization simplifies the mathematical model

while preserving the physical interpretation of the

controller behavior. The PID controller gains were

systematically tuned following the frequency-

domain design methodology outlined by [20],

https://www.itera.ac.id/

Original Article

4 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

which optimizes performance based on phase and

gain margins. Initial values were derived using the

Ziegler-Nichols method, followed by fine-tuning to

achieve the desired response characteristics in terms

of settling time and overshoot for the specific SMD

configuration. Given a desired position trajectory

𝑥𝑑(𝑡), the control law synthesized the input force as:

𝐹(𝑡) = 𝐾𝑝[𝑥𝑑(𝑡) − 𝑥1(𝑡)] +

𝐾𝑖 ∫ [𝑥𝑑(𝜏) − 𝑥1(𝜏)]𝑑𝜏 + 𝐾𝑑[�̇�𝑑(𝜏) −
𝑡

0

�̇�2(𝜏)]. (5)

The integral action in the controller necessitated

augmenting our state space with an additional

state variable 𝑥3 = ∫ [𝑥𝑑(𝜏) − 𝑥1(𝜏)]𝑑𝜏
𝑡

0

representing the accumulated position error. This

augmentation led to the complete closed-loop

dynamics:

[

ẋ1
ẋ2
ẋ3

] = [
0 1 0

−2.5 −1.5 −0.5
−1 0 0

] [

𝑥1
𝑥2
𝑥3
] +

[
0
0.01
0
] 𝑥𝑑(𝜏) .

(6)

 The closed-loop system in equation (6)

incorporates both the original system dynamics and

the PID control law, where the state 𝑥3 represents

the accumulated position error. The resulting state

matrix reflects the augmented system dynamics

including controller effects. The complete system

architecture, including both open-loop and closed-

loop configurations, was illustrated in Figure 2. This

representation explicitly showed the signal flow

and system interconnections, highlighting the

fundamental difference between direct force input

and feedback control strategies.

Figure 2. Block diagram representation of the SMD system:

Open-loop configuration showing direct force input with system

transfer function and closed-loop configuration illustrating PID

control architecture with complete signal flow paths and transfer

functions.

2.2 Numerical Implementation

The numerical solution of our SMD system

required careful consideration of both accuracy and

stability, particularly given the potential stiffness

introduced by the control parameters. Our

implementation leveraged the Python scientific

computing ecosystem, specifically employing

NumPy [24] for array operations and the Livermore

Solver for Ordinary Differential Equations with

Automatic method switching (LSODA) through

SciPy's integrate module [25]. For data

manipulation and storage of results, we utilized the

pandas library [43], which provided efficient

DataFrame structures for handling time series data

and simulation outputs.

 The core of our numerical approach lay in the

transformation of our continuous-time system into

a form suitable for computational solution. For the

open-loop system, we began with the state-space

representation derived in our mathematical

formulation. The solver required a system model

function that returned the state derivatives:

𝑑

𝑑𝑡
[
𝑥1
𝑥2
] = 𝑓(𝑥, 𝑡, 𝐹) ,

(7)

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 5

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

where 𝑥 = [𝑥1, 𝑥2]
𝑇 represented our state vector,

and 𝐹 was the input force. This formulation

expanded to our specific parameter values:

𝑓(𝑥, 𝑡, 𝐹) = [

𝑥2
𝐹 − 50𝑥1 − 50𝑥2

100

] .

(8)

 The LSODA algorithm employed an adaptive

strategy, automatically switching between methods

optimal for stiff and non-stiff regions of the

solution. In numerical analysis, stiff regions of

differential equations are characterized by solution

components that change at vastly different rates,

causing standard explicit methods to require

prohibitively small step sizes for stability. In our

SMD system, stiffness emerges particularly during

rapid transitions in the control force and in the

controlled system where the eigenvalue spread

increases due to controller action. Conversely, non-

stiff regions exhibit more uniform rates of change

across solution components, allowing larger step

sizes without stability concerns. This distinction

becomes especially important when simulating

mechanical systems under high-gain feedback

control. For non-stiff regions, it utilized Adams-

Moulton methods of orders 1-12, which took the

general form:

𝑥𝑛+1 = 𝑥𝑛 + ℎ∑ 𝛽𝑖f𝑛−𝑖
𝑘
𝑖=0 ,

 (9)

where ℎ represented the step size and 𝛽𝑖 were the

Adams-Moulton method coefficients, which are

determined by the specific order of the method

being used. These coefficients are derived from the

integration of the Lagrange interpolation

polynomials of the derivative function. For stiff

regions, the solver switched to backward

differentiation formulas (BDF):

∑ 𝛼𝑖x𝑛+1−𝑖
𝑘
𝑖=0 = ℎ𝛽0f𝑛+1 ,

 (10)

where 𝛼𝑛 and 𝛽0 were the BDF method coefficients,

with 𝛼𝐼 controlling the weighting of previous

solution values and 𝛽0 determining the

contribution of the current derivative estimate.

These coefficients are selected to optimize stability

and accuracy properties for stiff systems.

The simulation time domain was discretized with

careful attention to numerical stability and accuracy

requirements. We employed a base step size of ℎ =

0.01 seconds over a simulation interval [0, 100]

seconds for the open-loop system and [0, 20]

seconds for the controlled system. This

discretization resulted in:

𝑡𝑖 = 𝑡0 + 𝑖ℎ, 𝑖 = 0, 1,… ,𝑁 ,
 (11)

where 𝑁 = (𝑡𝑓 − 𝑡0)/ℎ represented the total number

of time steps.

The input force profile was generated

through a carefully designed transition function to

avoid numerical artifacts. For a step input from 𝐹1to

𝐹2 curring between times 𝑡1 and 𝑡2 , we

implemented a linear transition:

{

𝐹1,
𝐹1
𝐹2,
+
𝐹2 − 𝐹1
𝑡2 − 𝑡1

(𝑡 − 𝑡1),

𝑡 < 𝑡1
𝑡1 ≤ 𝑡 ≤ 𝑡2,
𝑡 > 𝑡2,

(12)

where F₁ represents the initial force magnitude (0 N)

before the transition begins at time t₁, and F₂

represents the final force magnitude (50 N) after the

transition completes at time t₂. This linear transition

in force magnitude between times t₁ = 4 s and t₂ = 5

s provides a smooth input that avoids exciting high-

frequency dynamics that could occur with an

instantaneous step input.

For the closed-loop system, the numerical

implementation became more intricate due to the

PID control law. The augmented state vector

[𝑥1 , 𝑥2, 𝑥3]
𝑇 required modification of our system

model to incorporate the integral term:

𝑓(𝑥, 𝑡, 𝑥𝑑) =

[

𝑥2
200(𝑥𝑑−𝑥1)+50𝑥3−100𝑥2−50𝑥1

100
𝑥𝑑 − 𝑥1

] .

(13)

https://www.itera.ac.id/

Original Article

6 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

The second component of this system incorporates

the complete PID control law from equation (5),

properly accounting for all gain terms and state

variables. The term [200(𝑥𝑑 − 𝑥1) + 50𝑥3 − 100𝑥2 −

50𝑥1]/100 represents the acceleration resulting

from the combined effect of the PID controller force

and the system's internal forces, normalized by the

mass. The numerical solver handled this augmented

system with the same adaptive strategy, but special

care was taken in the initialization and update of the

integral term to prevent numerical drift. The

desired position trajectory 𝑥𝑑(𝑡) followed a similar

smooth transition profile, but with values scaled to

position units: 𝑥𝑑,initial = 0 m to 𝑥𝑑,final = 1 m m

between 𝑡1 = 2 𝑠 and 𝑡2 = 2.5 s.

Error control in our numerical solution was

maintained through careful monitoring of local

truncation error at each step:

𝐿𝑇𝐸𝑛 = ‖𝑥𝑛+1 −�̃�𝑛+1‖ ≤ 𝑡𝑜𝑙 , (14)

where �̃�𝑛+1 represented a higher-order

approximation used for error estimation. In our

notation, subscripts refer to time discretization, not

state components. Specifically, 𝑥𝑛 denotes the

complete state vector at time step 𝑛 , while xₙ₊₁

represents the state vector at the subsequent time

step 𝑛 + 1. The components of the state vector at

any time step are indicated by superscripts or

explicit notation (e.g., x₁, x₂ for position and velocity

states). The step size was adaptively adjusted based

on this error estimate:

ℎ𝑛𝑒𝑤 = ℎ𝑜𝑙𝑑 (
𝑡𝑜𝑙

𝐿𝑇𝐸𝑛
)

1
𝑝

 ,

(15)

with 𝑝 denoting the current method order and

tol=10-8 as our specified tolerance.

The complete implementation was

organized into modular Python classes, following

object-oriented programming principles, which

facilitated easy modification and extension of the

system model and control algorithms. All numerical

computations were performed using Python, with

NumPy, SciPy, and pandas. For comparative

validation and robustness testing, parallel

implementations were developed in R using the

deSolve package [26] for differential equation

solving and the tidyverse ecosystem [27] for data

manipulation and visualization. The results from

both implementations showed excellent agreement,

providing confidence in the numerical accuracy of

our solutions.

2.3 Stability Analysis

Our stability analysis methodology

incorporated multiple theoretical frameworks to

thoroughly assess both open-loop and closed-loop

system behavior. Following [1], we employed three

complementary approaches of eigenvalue analysis,

Routh-Hurwitz criterion, and Bounded-Input,

Bounded-Output (BIBO) stability assessment, with

each method providing unique insights into the

system's dynamic characteristics.

The first stage of our analysis centered on

eigenvalue decomposition. For a linear time-

invariant system, stability required that all

eigenvalues had negative real parts [2]. The analysis

began with our open-loop system matrix:

𝐴 = [
0 1

−
𝑘

𝑚
−

𝑑

𝑚

] = [
0 1

−0.5 −0.5
] ,

(16)

from which we formulated the characteristic

equation through determinant evaluation:

det(𝑠𝐈 − 𝐀) = |
𝑠 −1
0.5 𝑠 + 0.5

| = 𝑠2 +

𝑑

𝑚
𝑠 +

𝑘

𝑚
= 𝑠2 + 0.5𝑠 + 0.5 = 0 ,

(17)

 Following [3], we determined two

fundamental parameters characterizing the

system's behavior. The natural frequency 𝜔𝑛

represented the system's undamped oscillation rate,

while the damping ratio ζ characterized the decay

rate of oscillations:

𝜔𝑛 = √
𝑘

𝑚
= √0.5 ,

ζ =
𝑑

2√𝑚𝑘
=

50

2√100.50
= 0.354 .

(18)

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 7

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

The nature of system damping played a

crucial role in determining the transient response

characteristics. As derived by [1], the damping ratio

ζ = 0.354 indicated an underdamped system, as it fell

within the range 0 < ζ < 1. In such cases, the system's

free response exhibited oscillatory behavior with

exponential decay. The complete solution took the

form:

𝑥(𝑡) = 𝐴𝑒−ζ𝜔𝑛𝑡 cos(𝜔𝑑𝑡 + 𝜙) (19)

where 𝜔𝑑 = 𝜔𝑛√1− ζ2 represented the damped

natural frequency, and 𝐴 and 𝜙 were determined

by initial conditions. This underdamped

characteristic arose from our physical parameters,

with the mass-spring-damper combination

producing complex conjugate eigenvalues 𝜆1,2 =

− ζ𝜔𝑛 ± 𝑖𝜔𝑑 = −0.25 ± 0.661𝑖.

 Asymptotic stability analysis followed the

theoretical framework of [2], which required

examination of the system's long-term behavior as

𝑡 → ∞. For our linear system, asymptotic stability

demanded that all eigenvalues had strictly negative

real parts. The real component of our eigenvalues,

−ζ𝜔𝑛 = −0.25, being negative, ensured exponential

decay of any initial conditions or disturbances. This

stability manifested through the exponential term

𝑒−ζ𝜔𝑛𝑡 in the system response, which approached

zero as time increased.

 The Routh-Hurwitz stability criterion [4]

provided an algebraic method for determining

stability without explicit eigenvalue calculation. For

our second-order characteristic equation:

𝑎2𝑠
2 + 𝑎1𝑠 + 𝑎0 = 𝑠

2 + 0.5𝑠 + 0.5 = 0 ,
 (20)

we constructed the Routh array and examined its

first column entries:

𝑠2

𝑠1

𝑠0
|
1 0.5
0.5 0
0.5

 .

(21)

 The stability conditions derived from the

Routh array required all elements in its first column

to be positive. Following [5], this translated to the

requirements 𝑎2 > 0 , 𝑎1 > 0 , and 𝑎0 > 0 , which

were all satisfied in our system, confirming stability

from an algebraic perspective.

The BIBO stability assessment followed [6]

methodology, focusing on the system's transfer

function:

𝐺(𝑠) =
1

𝑚𝑠2+𝑑𝑠+𝑘
=

0.01

𝑠2+0.5𝑠+0.5
 . (22)

This approach required examination of both

the positivity of denominator coefficients and the

Hurwitz stability of the denominator polynomial.

Our transfer function satisfied both conditions, as

all denominator coefficients were positive and

matched the previously analyzed characteristic

equation.

For the closed-loop analysis with PID

control, we extended these methodologies to the

augmented third-order system. The characteristic

equation expanded to include controller

parameters:

𝑠3 +
𝑑+𝐾𝑑

𝑚
𝑠2 +

𝑘+𝐾𝑝

𝑚
𝑠 +

𝐾𝑖

𝑚
= 0 , (23)

necessitating an expanded Routh array for stability

analysis:

𝑠3 1 𝑘 + 𝐾𝑝

𝑚

𝑠2 𝑑 +𝐾𝑑
𝑚

𝐾𝑖
𝑚

𝑠1 (𝑑 + 𝐾𝑑)(𝑘 + 𝐾𝑝) − 𝑚𝐾𝑖

𝑚(𝑑 + 𝐾𝑑)

0

𝑠0 𝐾𝑖
𝑚

.

(24)

The relationship between damping and

asymptotic stability was further illuminated

through the root locus analysis detailed by [5]. The

characteristic equation roots, or system poles, lying

in the left half of the complex plane (Re (𝜆)< 0)

guaranteed that any oscillations would eventually

decay. The distance of these poles from the

imaginary axis, determined by ζ𝜔𝑛 , dictated the

https://www.itera.ac.id/

Original Article

8 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

decay rate, while their imaginary components ±𝜔𝑑

determined the oscillation frequency.

The robustness of our closed-loop system

was examined through the method of [7], which

analyzed the loop transfer function:

𝐿(𝑠) =
𝐾𝑝𝑠

2 +𝐾𝑑𝑠 + 𝐾𝑖

𝑠(𝑚𝑠2 + 𝑑𝑠 + 𝑘)
 .

(25)

The robustness analysis of our closed-loop

system using the loop transfer function provided

quantitative stability margins, indicating the

system's tolerance to gain and phase variations

before instability occurs. The calculated gain and

phase margins demonstrated that our PID

controller design provides sufficient robustness

against modeling uncertainties, parameter

variations, and external disturbances. The stability

margins derived from this transfer function offered

a direct measure of the control system's resilience,

confirming that the designed controller achieves

both performance objectives and stability

robustness for the spring-mass-damper system

under consideration. The transfer function

(equation 15) formed the basis for determining

critical frequency-domain stability margins,

providing insight into the system's robustness

against parameter variations and modeling

uncertainties. The stability margins derived from

this transfer function offered quantitative measures

of how much gain variation and phase shift the

system could tolerate while maintaining stability.

2.3 Statistical Framework for Performance

Analysis

 Building upon the system dynamics

simulation framework described before, we

developed and implemented a comprehensive

statistical analysis approach to compare the

performance characteristics of Python and R

implementations. All experiments were conducted

on a ThinkPad P52s laptop running Fedora Linux 39

(Budgie) x86_64, equipped with an Intel i7-8550U

processor (8 threads, 4.000GHz). Given that our

numerical simulations primarily involved CPU-

bound computations without parallel processing

requirements, this standard laptop configuration

provided an adequate testing environment

representative of typical scientific computing setups

in practice.

Our analysis pipeline utilized Python's

scientific computing stack, including NumPy for

numerical computations [24], SciPy for statistical

testing [25], pandas for data management [43], and

Seaborn for statistical visualization [28]. Following

established practices in performance evaluation [29]

and statistical sampling theory [8], we collected 𝑛 =

1000 measurements for each implementation type

𝑖 ∈ controlled, open and language 𝑗 ∈ [Python, R]

after discarding 𝑘 = 5 warm-up runs. These warm-

up runs were essential to mitigate the effects of just-

in-time compilation and cache warming, as

demonstrated by Herho et al. [30, 31, 32].

 Our analysis began with fundamental

statistical measures for each implementation-

language pair (𝑖, 𝑗) . Following the

recommendations of Jain [9] for computer systems

performance analysis, we computed the central

tendency and dispersion metrics:

𝜇𝑖,𝑗 =
1

𝑛
∑ 𝑋𝑖,𝑗,𝑘
𝑛
𝑘=1 , (26)

where 𝜇𝑖,𝑗 represents the mean performance

measure, n is the number of observations, and 𝑋𝑖,𝑗,𝑘

is the 𝑘 − 𝑡ℎ performance measurement for

implementation 𝑖 and language 𝑗.

𝜒𝑖,𝑗 = √
1

𝑛−1
∑ (𝑋𝑖,𝑗,𝑘 − 𝜇𝑖,𝑗)

2𝑛
𝑘=1 ,

(27)

where 𝜒𝑖,𝑗 denotes the standard deviation of the

performance measurements.

𝜂𝑖,𝑗 =
𝜒𝑖,𝑗

𝜇𝑖,𝑗
× 100% ,

(28)

where 𝜂𝑖,𝑗 represents the coefficient of variation.

 The coefficient of variation in Equation [34]

proved particularly valuable for performance

comparisons, as it provided a dimensionless

measure of variability [10]. Following [11] and

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 9

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

recent performance analysis guidelines [33], we

interpreted 𝜂 below 5% as very consistent

performance, 5-10% as good consistency, 10-15% as

moderate variability, and above 15% as high

variability.

 Distribution shape analysis was crucial for

understanding performance characteristics and

selecting appropriate statistical tests [12]. We

computed skewness 𝛾1 and kurtosis 𝛾2:

𝛾1 =
1

𝑛
∑

(𝑋𝑖,𝑗,𝑘−𝜇𝑖,𝑗)
3

𝜒𝑖,𝑗
3

𝑛
𝑘=1 ,

(29)

where 𝛾1 represents the skewness of the

distribution, providing a measure of asymmetry in

the performance data. Positive skewness indicates a

right-tailed distribution with occasional high

outliers, while negative skewness suggests left-

tailed distributions with occasional low values

𝛾2 =
1

𝑛
∑

(𝑋𝑖,𝑗,𝑘−𝜇𝑖,𝑗)
4

𝜒𝑖,𝑗
4

𝑛
𝑘=1 − 3 ,

(30)

where 𝛾2 represents the excess kurtosis of the

distribution. These shape parameters were essential

for detecting potential performance anomalies and

understanding the underlying performance

distribution patterns, helping us identify non-

standard characteristics in execution time and

memory usage distributions across

implementations [13].

 The normality of distributions was assessed

using both Shapiro-Wilk and Kolmogorov-Smirnov

tests, as recommended by [34] for their

complementary strengths in different sample sizes

and distribution types:

𝑊 =
(∑ 𝛼𝑖𝑥(𝑖)
𝑛
𝑖=1)

2

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

 ,
(31)

where 𝑊 is the Shapiro-Wilk test statistic, 𝑥(𝑖) (with

parenthetical index) represents ordered sample

values arranged in ascending order, distinct from x ᵢ

which denotes the raw sample values or state

variables elsewhere in this paper. The constants a ᵢ

are derived from the covariance matrix of order

statistics, and �̅� is the sample mean.

𝐷𝑛 = 𝑠𝑢𝑝
𝑥
|𝐹𝑛(𝑥) − 𝐹(𝑥)| ,

(32)

where 𝐷𝑛 is the Kolmogorov-Smirnov test statistic,

𝐹𝑛(𝑥) is the empirical distribution function, and

𝐹(𝑥) is the theoretical normal distribution.

 For comparing Python and R

implementations, we employed non-parametric

tests due to their robustness against violations of

normality assumptions [14]. The Wilcoxon signed-

rank test [35] was used for paired comparisons:

𝑊 = ∑ [𝑠𝑔𝑛(𝑥2,𝑟 − 𝑥1,𝑟). 𝑅𝑟]
𝑛𝑟
𝑟=1 ,

 (33)

where 𝑊 is the test statistic, 𝑛𝑟 is the number of

non-zero differences between paired samples, 𝑠𝑔𝑛

is the sign function that returns +1, 0, or -1 according

to the sign of its argument, and 𝑅𝑟 is the rank of the

absolute difference. In this context, 𝑥2,𝑟 and 𝑥2,𝑟

represent the 𝑟-th pair of observations from the two

compared implementation methods (Python and

R). This paired comparison directly quantifies the

significance of performance differences between

implementations.

 This was complemented by Levene's test [44]

for assessing variance homogeneity, chosen for its

robustness against non-normality [36]:

Λ =
(𝑁−𝑘)

(𝑘−1)

∑ 𝑁𝑖(𝑍𝑖.−𝑍..)
2𝑛

𝑖=1

∑ ∑ (𝑍𝑖𝑗−𝑍𝑖.)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1

 ,
(34)

where Λ is the test statistic, 𝑁 is the total sample

size, 𝑘 is the number of groups, 𝑁𝑖 is the sample size

of the 𝑖-th group, 𝑍𝑖𝑗 = |𝑋𝑖𝑗 − 𝑋𝑖| being the group

median, 𝑍𝑖. represents group means of the 𝑍𝑖𝑗 , and

𝑍.. is the overall mean of 𝑍𝑖𝑗 .

 Following modern statistical practice [37], we

complemented significance testing with effect size

analysis using Cohen's d [15]:

https://www.itera.ac.id/

Original Article

10 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

𝛿 =
𝜇𝑃𝑦𝑡ℎ𝑜𝑛−𝜇𝑅

√
𝜒𝑃𝑦𝑡ℎ𝑜𝑛
2 +𝜒𝑅

2

2

 ,

(35)

where 𝛿 is Cohen's d effect size measure, 𝜇𝑃𝑦𝑡ℎ𝑜𝑛

and 𝜇𝑅 are the means of Python and R

implementations respectively, and 𝜒𝑃𝑦𝑡ℎ𝑜𝑛
2 and 𝜒𝑅

2

are their respective variances.

 This measure provided a standardized

assessment of practical significance, with effect

sizes interpreted according to established

guidelines [38] as negligible (|𝛿| < 0.2) , small

(0.2 ≤ |𝛿| < 0.5), medium (0.5 ≤ |𝛿| < 0.8), or large

(|𝛿| ≥ 0.8).

 Performance anomalies were identified using

a robust multi-method approach [16], combining

three complementary detection methods as

recommended by Chandola et al. [39]. The

traditional Z-score method:

|ζ| = |
𝑥−𝜇

𝜒
| > 3.5 ,

(36)

where |ζ| is the absolute Z-score, 𝑥 is the

observation value, 𝜇 is the mean, and 𝜒 is the

standard deviation.

 This was supplemented by the modified Z-

score using median absolute deviation, which

offered greater robustness against multiple outliers

[40]:

|ζ𝑚𝑜𝑑| = |
0.6745(𝑥−𝑚𝑒𝑑𝑖𝑎𝑛)

𝑀𝐴𝐷
| > 3.5 , (37)

where |ζ𝑚𝑜𝑑| is the modified Z-score, MAD is the

median absolute deviation, and 0.6745 is the

normalization constant.

 The interquartile range method provided a

distribution-free approach [17]:

𝑥 < Q1 − 1.5𝐼𝑄𝑅 𝑜𝑟 𝑥 > Q3 + 1.5𝐼𝑄𝑅 ,
 (38)

where Q1 and Q3 are the first and third quartiles

respectively, and IQR is the interquartile range.

 The final set of anomalies 𝒜 was determined

through consensus voting [18]:

𝒜 = 𝒜ζ ∪𝒜mod ∪𝒜𝐼𝑄𝑅 ,
 (39)

where 𝒜ζ , 𝒜mod , and 𝒜𝐼𝑄𝑅 represent the sets of

anomalies identified by the Z-score, modified Z-

score, and IQR methods respectively.

 This statistical framework described in

Equations (26)-(39) provided a rigorous foundation

for comparing performance characteristics between

implementations, adhering to established practices

in both statistical methodology and performance

analysis [41]. All numerical results were

standardized to three decimal places for consistency

in technical reporting, as recommended by [19] for

reproducible research practices.

Results And Discussion

3.1 System Dynamics

The SMD system exhibited complex dynamic

behavior characteristic of underdamped second-

order mechanical systems, as evidenced by both

mathematical stability analysis and numerical

simulations. Figure 3 illustrates the system's

temporal evolution under a step force input, while

Figure 4 provides insight into the system's state-

space behavior through its phase portrait.

 The eigenvalue analysis revealed complex

conjugate poles at −0.25 ± 0.661𝑖, mathematically

confirming the system's underdamped nature. This

finding aligns with the calculated damping ratio

𝜁 = 0.354 , indicating oscillatory behavior with

gradual energy dissipation. The characteristic

equation coefficients [1, 0.5, 0.5] satisfied stability

criteria across multiple analytical frameworks,

including eigenvalue, Routh-Hurwitz, and BIBO

stability analyses.

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 11

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

Figure 3. Temporal evolution of the open-loop system response

to a 50 N step input. From top to bottom: (a) Applied force

showing the transition from 0 to 50 N between t = 4 s and t = 5 s,

(b) Position response demonstrating underdamped oscillations

converging to 1.000 m, (c) Velocity profile reaching a maximum

of 0.4 m/s before dampened oscillations to zero, and (d)

Acceleration response highlighting the system's dynamic

behavior with peak values of ± 0.2 m/s2.

As shown in Figure 3, the system response to

the step input force demonstrates characteristic

underdamped behavior. The position response

(Figure 3b) shows an initial overshoot followed by

decaying oscillations before settling to its final value

of 1 m. The velocity profile (Figure 3c) exhibits a

maximum speed of 0.4 m/s during the initial

response phase, with subsequent oscillations

diminishing as the system approaches equilibrium.

The acceleration response (Figure 3d) shows sharp

transitions corresponding to the force application,

with peak values of approximately ±0.2 m/s2.

The phase portrait in Figure 4 provides

additional insight into the system's dynamic

behavior. The spiral trajectory illustrates the

system's evolution from its initial state at the origin

to its final equilibrium point at (1 m, 0 m/s). The

decreasing radius of the spiral confirms the system's

stability and energy dissipation through damping,

while the elliptical shape of the trajectory reflects

the continuous exchange between potential and

kinetic energy characteristic of spring-mass

systems. The simulation results confirm the

theoretical stability predictions, with the system

achieving its expected final state: position at 1 m,

velocity at 0 m/s, and acceleration at 0 m/s2.

Figure 4. Phase portrait of the open-loop system showing the

relationship between position and velocity. The spiral trajectory,

beginning from the origin and converging to the equilibrium

point (1 m, 0 m/s), illustrates the system's stable focus behavior.

The decreasing spiral radius demonstrates the energy dissipation

through damping, while the elliptical shape reflects the

interchange between potential and kinetic energy.

The implementation of PID control

significantly enhanced the system's performance

characteristics, introducing more sophisticated

dynamic behavior while maintaining stability.

Figure 5 presents the comprehensive closed-loop

system response, while Figure 6 illustrates the

https://www.itera.ac.id/

Original Article

12 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

controlled system's state-space behavior through its

phase portrait.

Figure 5. Closed-loop system response with PID control. From

top to bottom: (a) Position tracking showing desired (dashed red)

and actual (solid blue) trajectories, demonstrating effective

reference tracking, (b) Control force profile exhibiting initial peak

of 259.2 N followed by smooth regulation, (c) Position error

evolution showing maximum deviation of 0.107 m and final error

of 0.004 m, (d) Velocity response with peak of 1.04 m/s, and (e)

Acceleration profile with maximum of 2.14 m/s2.

The closed-loop stability analysis revealed a

richer pole constellation compared to the open-loop

system, with eigenvalues at -0.5 and -0.25 ± 0.661𝑖.

The additional real pole at -0.5, introduced by the

controller, enhanced the system's damping

characteristics, as evidenced by the increased

damping ratio of 𝜁 = 0.474 compared to the open-

loop value of 0.354. The characteristic equation

coefficients [1, 1.5, 2.5, 0.5] maintained stability

across all analytical criteria while enabling

improved transient response.

The controlled system demonstrated superior

performance metrics, as shown in Figure 5. The

position tracking (Figure 5a) achieved a steady-state

value of 0.996 m, resulting in a final position error

of only 0.004 m (0.4%). The maximum overshoot of

0.107 m (10.7%) occurred during the initial transient

response, while the settling time of 12.8 seconds

represented a significant improvement over the

open-loop behavior. The control force profile

(Figure 5b) showed an initial peak of 259.2 N,

necessary for rapid response, before settling to a

steady-state value that maintained the desired

position.

Figure 6. Phase portrait of the closed-loop system illustrating the

controlled state-space trajectory. The smooth path from initial

conditions to the desired setpoint (1.0 m, 0 m/s) demonstrates the

controller's ability to regulate both position and velocity

simultaneously. The absence of multiple spirals indicates

improved damping compared to the open-loop response.

The phase portrait in Figure 6 reveals the

effectiveness of the control strategy in managing the

system's states trajectory. Unlike the open-loop

case, the controlled system exhibits a more direct

path to the desired equilibrium point, with the

controller actively shaping the system's dynamic

behavior. The single, well-defined trajectory

indicates effective energy management by the

controller, avoiding the multiple oscillations

characteristic of the uncontrolled response.

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 13

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

The RMS position error of 0.124 m provides a

quantitative measure of tracking performance

throughout the entire operation. The maximum

speed of 1.04 m/s and acceleration of 2.14 m/s2

demonstrate the controller's ability to generate

aggressive yet controlled motions when necessary

while maintaining system stability. These

performance metrics validate the theoretical design

of the PID controller with gains Kp = 200 N/m, Ki =

50 N/(ms), and Kd = 100 Ns/m.

3.2 Performance Analysis

Our statistical analysis revealed nuanced and

significant differences between Python and R

implementations across all metrics and scenarios,

evaluated through 1,000 iterations per test. The

results show a complex interplay of execution time,

memory usage, and stability across controlled and

open-loop systems, highlighting the strengths and

weaknesses of each platform in scientific computing

workflows.

Python demonstrated substantial advantages

in execution time performance. In controlled

systems, Python achieved a mean execution time of

2.037 seconds (σ = 0.337), significantly

outperforming R, which recorded a mean of 5.591

seconds (σ = 0.514). This reduction of 63.566% was

statistically significant, confirmed by the Wilcoxon

signed-rank test (p < 0.001, d = -8.175). However,

Python’s performance came at the cost of higher

variability (CV = 16.553%, categorized as "High

variability"), while R showed more consistent

execution times (CV = 9.201%, "Good consistency").

Figure 7, left panel, illustrates this contrast with

Python exhibiting a broader distribution than R.

In open-loop implementations, Python

retained its performance edge with a mean

execution time of 3.103 seconds (σ = 0.473)

compared to R’s 4.223 seconds (σ = 0.667). Although

the margin of improvement was reduced to

26.517%, the difference remained statistically

significant (p < 0.001, d = -1.939). Both platforms

exhibited high variability in this scenario (Python

CV = 15.227%, R CV = 15.784%). Levene’s test

further confirmed significant variance differences (F

= 13.157, p < 0.001). The right panel of Figure 7

highlights these trends, showing Python’s faster,

albeit more variable, performance relative to R.

Memory usage patterns presented a

contrasting narrative. In controlled systems, Python

consumed slightly more memory, with a mean of

125.461 MB (σ = 0.217) compared to R’s 123.583 MB

(σ = 0.139), marking a 1.519% increase. This

difference was statistically significant (p < 0.001)

with a large effect size (d = 10.305). However, both

platforms demonstrated exceptional stability, as

reflected by CV values of 0.173% for Python and

0.112% for R. These results suggest that Python’s

higher baseline interpreter memory footprint

accounts for the slight difference.

Figure 7. Violin plots of execution time distributions for Python

and R under controlled and open-loop implementations. The left

panel represents controlled implementations, while the right

panel shows open-loop implementations.

In open-loop systems, memory usage

between the platforms converged. Python recorded

a mean of 132.965 MB (σ = 0.224), while R reached

133.020 MB (σ = 0.112). The negligible difference of

-0.042% was statistically significant (p < 0.001),

though with a small effect size (d = -0.312),

indicating practical equivalence. Both

implementations maintained highly consistent

memory utilization, with CV values below 0.2%.

Figure 8, right panel, illustrates this near-parity in

memory usage distributions.

https://www.itera.ac.id/

Original Article

14 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

Figure 8. Violin plots of memory usage distributions for Python

and R under controlled and open-loop implementations. The left

panel represents controlled implementations, while the right

panel shows open-loop implementations.

Distribution shape analysis provided

additional insights. Execution time data showed

significant right skewness in both platforms, with

Python exhibiting skewness ≥ 1.094 and R

exceeding 3.369 in controlled implementations.

Non-normality tests (Shapiro-Wilk p < 0.001)

confirmed deviations from Gaussian behavior, as

shown by broader tails in Figure 7. Memory usage

data, on the other hand, displayed symmetric or

moderately skewed distributions depending on the

scenario, reflecting greater consistency in resource

allocation.

Anomaly counts varied significantly across

configurations. For controlled execution times,

Python recorded a high anomaly rate (33.0% of

data) compared to R’s 10.6%, reflecting the

variability induced by Python’s dynamic

optimization strategies. Conversely, in open-loop

memory usage, R exhibited more anomalies (1.8%)

compared to Python’s 0.4%, underscoring R’s

sensitivity to subtle system conditions in memory-

intensive scenarios.

Overall, Python’s execution speed makes it

ideal for computationally intensive tasks, especially

in controlled systems where performance is critical.

However, its variability and higher anomaly rates

suggest careful consideration for applications

requiring extreme precision and stability. R’s

strength lies in its consistent memory usage and

lower variability, making it a better choice for

scenarios where stability and resource

predictability are paramount. These results

underscore the importance of aligning platform

selection with specific computational requirements

to optimize performance and efficiency.

For example, Masini and Bientinesi [43]

emphasizes Python’s broader ecosystem and

optimization strategies as critical for scalable

applications, while Raschka et al. [44] highlight R’s

robustness for statistical workflows. These findings

align with earlier research by Watson et al. [45],

suggesting platform-specific trade-offs in

computational reliability.

Conclusions

This study provides a comprehensive

evaluation of Python and R for simulating and

controlling SMD systems, with a focus on

computational performance and numerical

accuracy. Python exhibited a clear advantage in

execution speed, achieving reductions of up to

63.57% in mean runtime compared to R in

controlled system simulations. However, this

efficiency came with trade-offs, including higher

variability in execution times and a greater anomaly

rate, reflecting the platform's dynamic optimization

strategies. Conversely, R demonstrated superior

consistency in execution and memory usage,

making it more suitable for scenarios prioritizing

stability and resource predictability. These findings

underscore the distinct strengths of each platform

and the importance of selecting the right tool for

specific computational needs.

It is important to note that while Python and

R demonstrated significant differences in

computational performance, these differences did

not affect the physical behavior or stability

characteristics of the simulated system. Both

platforms produced identical system dynamics

when using the same numerical solver (LSODA)

with equivalent tolerance settings, confirming that

the 63.57% execution speed advantage of Python

represents purely computational efficiency rather

than differences in simulation accuracy or dynamic

response. The time required for the controlled

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 15

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

system to reach stability (approximately 12.8

seconds) remained consistent across both

implementations, validating the platform-

independent nature of the underlying mathematical

model. This consistency in physical results despite

performance differences further strengthens our

confidence in the robustness of both

implementations for scientific computing

applications.

The implementation of PID control

significantly enhanced system dynamics, yielding

improved position tracking and stability. With a

final position error of just 0.4% and enhanced

damping characteristics, the controlled system

achieved superior performance metrics over the

open-loop configuration. The controlled system's

steady-state precision and reduced settling time

validate the PID controller's design and its

effectiveness in managing transient responses.

Overall, this work bridges theoretical stability

analysis with empirical performance insights,

providing a valuable resource for researchers in

computational dynamics and control systems. By

leveraging the capabilities of open-source

platforms, this research promotes reproducibility

and transparency in the numerical study of

dynamic systems.

Acknowledgements

Code and Data Avalability. All code used for numerical

simulations, statistical analyses, and the complete

dataset generated during this study are openly available

in the GitHub repository at

https://github.com/sandyherho/smdCompare.

Funding. This work was supported by the Dean's

Distinguished Fellowship, University of California,

Riverside, in 2023.

Declarations
Conflict of interest. The authors declare there is no

conflict.

Competing interests. Authors do not have any

competing financial interest to declare.

References

[1] Ogata, K.: Modern Control Engineering. Prentice Hall,

Upper Saddle River, NJ, USA (2010).

[2] Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper

Saddle River, New Jersey, USA (2002).

[3] Dorf, R.C., Bishop, R.H.: Modern Control Systems. Prentice

Hall, Upper Saddle River, NJ, USA (2011).

[4] Nise, N.S.: Control Systems Engineering. John Wiley &

Sons, New York City, NY, USA (2020).

[5] Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback

Control of Dynamic Systems. Pearson, Upper Saddle River,

NJ, USA (2015).

[6] Åström, K.J., Murray, R.M.: Feedback Systems: An

Introduction for Scientists and Engineers. Princeton

University Press, Princeton, NJ, USA (2008).

[7] Chen, C.-T.: Linear System Theory and Design. Oxford

University Press, Oxford, UK (1995).

[8] Thompson, S.K.: Sampling. Wiley Series in Probability and

Statistics, New York City, NY, USA (2012).

[9] Jain, R.: The Art of Computer Systems Performance

Analysis: Techniques for Experimental Design,

Measurement, Simulation, and Modeling. John Wiley &

Sons, New York, USA (1991).

[10] Brown, R.J.C., Brown, R.F.C.: Statistical Analysis of

Measurement Data. Royal Society of Chemistry, London,

United Kingdom (1998).

[11] Hoaglin, D.C., Mosteller, F., Tukey, J.W.: Understanding

Robust and Exploratory Data Analysis. Wiley-Interscience,

Hoboken, NJ, USA (2000).

[12] Montgomery, D.C.: Design and Analysis of Experiments.

John Wiley & Sons, New York City, NY, USA (2017).

[13] Bulmer, M.G.: Principles of Statistics. Dover Publications,

New York, USA (1979).

[14] Siegel, S.: Nonparametric Statistics for the Behavioral

Sciences. McGraw-Hill, New York City, NY, USA (1956).

[15] Cohen, J.: Statistical Power Analysis for the Behavioral

Sciences. Routledge, New York City, NY, USA (1988).

https://doi.org/10.4324/9780203771587.

[16] Iglewicz, B., Hoaglin, D.C.: Volume 16: How to Detect and

Handle Outliers. ASQC Quality Press, Milwaukee, WI,

USA (1993).

[17] Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley,

Reading, MA, USA (1977).

[18] Aggarwal, C.C.: Outlier Analysis. Springer, New York

City, NY, USA (2013). https://doi.org/10.1007/978-1-4614-

6396-2.

[19] Altman, D.G., Machin, D., Bryant, T.N., Gardner, M.J.:

Statistics with Confidence: Confidence Intervals and

Statistical Guidelines. BMJ Books, London, UK (2013).

https://www.itera.ac.id/
https://github.com/sandyherho/smdCompare
https://doi.org/10.4324/9780203771587
https://doi.org/10.1007/978-1-4614-6396-2
https://doi.org/10.1007/978-1-4614-6396-2

Original Article

16 | Indonesian Journal of Applied Mathematics, vol. 5, no. 1 (2025) e-ISSN: 2774-2016 | p-ISSN: 2774 - 2067

Quantitative Performance Analysis of Spring-Mass-Damper Control Systems: A Comparative Implementation in Python and R

Sandy H. S. Herho and Siti N. Kaban

[20] Åström, K.J., Hägglund, T.: Advanced PID Control. ISA-

The Instrumentation, Systems, and Automation Society

(2006).

[21] Irawan, D.E., Pourret, O., Besançon, L., Herho, S.H.S.,

Ridlo, I.A., Abraham, J.: Post-Publication Review: The Role

of Science News Outlets and Social Media. Annals of

Library and Information Studies 71, 465–474 (2024).

https://doi.org/10.56042/alis.v71i4.1425.

[22] Fraser, N., Brierley, L., Dey, G., Polka, J.K., Pálfy, M.,

Nanni, F., Coates, J.A.: The evolving role of preprints in the

dissemination of COVID-19 research and their impact on

the science communication landscape. PLoS Biology 19(4),

3000959 (2021). https://doi.org/10.1371/journal.pbio.3000959.

[23] Sugimoto, C.R., Work, S., Lariviere, V., Haustein, S.:

Scholarly use of social media and altmetrics: A review of

the literature. Journal of the Association for Information

Science and Technology 68(9), 2037–2062 (2017).

https://doi.org/10.1002/asi.23833.

[24] Harris, C., Millman, K., Walt, S., Gommers, R., Virtanen, P.,

Cournapeau, D., et al.: Array Programming with NumPy.

Nature 585(7825), 357–362 (2020).

https://doi.org/10.1038/s41586-020-2649-2.

[25] Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0:

Fundamental Algorithms for Scientific Computing in

Python. Nature Methods 17(3), 261–272 (2020).

https://doi.org/10.1038/s41592-019-0686-2.

[26] Soetaert, K., Petzoldt, T., Setzer, R.W.: Solving Differential

Equations in R: Package deSolve. Journal of Statistical

Software 33(9), 1–25 (2010).

https://doi.org/10.18637/jss.v033.i09.

[27] Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan,

L.D., et al.: Welcome to the Tidyverse. Journal of Open

Source Software 4(43), 1686 (2019).

https://doi.org/10.21105/joss.01686.

[28] Waskom, M.L.: Seaborn: Statistical Data Visualization.

Journal of Open-Source Software 6(60), 3021 (2021).

https://doi.org/10.21105/joss.03021.

[29] Georges, A., Buytaert, D., Eeckhout, L.: Statistically

Rigorous Java Performance Evaluation. ACM SIGPLAN

Notices 42(10), 57–76 (2007).

https://doi.org/10.1145/1297105.1297033.

[30] Herho, S., Anwar, I., Herho, K., Dharma, C., Irawan, D.:

COMPARING SCIENTIFIC COMPUTING

ENVIRONMENTS FOR SIMULATING 2D NON-

BUOYANT FLUID PARCEL TRAJECTORY UNDER

INERTIAL OSCILLATION: A PRELIMINARY

EDUCATIONAL STUDY. Indonesian Physical Review

7(3), 451–468 (2024). https://doi.org/10.29303/ipr.v7i3.335.

[31] Herho, S., Fajary, F., Herho, K., Anwar, I., Suwarman, R.,

Irawan, D.: Reappraising Double Pendulum Dynamics

across Multiple Computational Platforms. CLEI Electronic

Journal 28(1) (2025). https://doi.org/10.19153/cleiej.28.1.10.

[32] Herho, S., Kaban, S.N., Irawan, D.E., Kapid, R.: Efficient 1D

Heat Equation Solver: Leveraging Numba in Python.

Eksakta: Berkala Ilmiah Bidang MIPA 25(2), 126–137

(2024). https://doi.org/10.24036/eksakta/vol25-iss02/487.

[33] Mostafavi, S., Hakami, V., Paydar, F.: Performance

Evaluation of Software Defined Networking Controllers: A

Comparative Study. Computer and Knowledge

Engineering 2(2), 63–73 (2020).

https://doi.org/10.22067/cke.v2i2.84917.

[34] Razali, N.M., Wah, Y.B.: Power Comparisons of Shapiro-

Wilk, Kolmogorov Smirnov, Lilliefors and Anderson-

Darling Tests. Journal of Statistical Modeling and Analytics

2(1), 21–33 (2011).

[35] Wilcoxon, F.: Individual Comparisons by Ranking

Methods. Biometrics Bulletin 1(6), 80–83 (1945).

https://doi.org/10.2307/3001968.

[36] Brown, M.B., Forsythe, A.B.: Robust Tests for the Equality

of Variances. Journal of the American Statistical

Association 69(346), 364–367 (1974).

https://doi.org/10.1080/01621459.1974.10482955.

[37] Sullivan, G.M., Feinn, R.: Using Effect Size or Why the P

Value is Not Enough. Journal of Graduate Medical

Education 4(3), 279–282 (2012).

https://doi.org/10.4300/JGME-D-12-00156.1.

[38] Sawilowsky, S.S.: New Effect Size Rules of Thumb. Journal

of Modern Applied Statistical Methods 8(2), 597–599

(2009). https://doi.org/10.22237/jmasm/1257035100.

[39] Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection:

A Survey. ACM Computing Surveys 41(3), 1–58 (2009).

https://doi.org/10.1145/1541880.1541882.

[40] Rousseeuw, P.J., Croux, C.: Alternatives to the Median

Absolute Deviation. Journal of the American Statistical

Association 88(424), 1273–1283 (1993).

https://doi.org/10.1080/01621459.1993.10476408.

[41] Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.:

Producing Wrong Data Without Doing Anything

Obviously Wrong! ACM SIGARCH Computer

Architecture News 37(1), 265–276 (2009).

https://doi.org/10.1145/2528521.1508275.

[42] Tippmann, S.: Programming Tools: Adventures with R.

Nature 517(7532), 109-110 (2015).

https://doi.org/10.1038/517109a.

[43] McKinney, W.: Data Structures for Statistical Computing in

Python. In: Walt, S., Millman, J. (eds.) Proceedings of the

9th Python in Science Conference, pp. 51–56 (2010).

https://doi.org/10.25080/majora-92bf1922-00a.

[44] Levene, H.: Robust Tests for Equality of Variances. In:

Olkin, I. (ed.) Contributions to Probability and Statistics,

pp. 278–292. Stanford University Press, Stanford,

California, USA (1960).

[45] Masini, S., Bientinesi, P.: High-Performance Parallel

Computations Using Python as High-Level Language. In:

Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro, M.,

Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino,

B., Alexander, M. (eds.) Euro-Par 2010 Parallel Processing

Workshops, pp. 541–548. Springer, Berlin, Heidelberg

(2011). https://doi.org/10.1007/978-3-642-21878-1_66

[46] Raschka, S., Patterson, J., Nolet, C.: Machine Learning in

Python: Main Developments and Technology Trends in

Data Science, Machine Learning, and Artificial Intelligence.

https://doi.org/10.56042/alis.v71i4.1425
https://doi.org/10.1371/journal.pbio.3000959
https://doi.org/10.1002/asi.23833
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.03021
https://doi.org/10.1145/1297105.1297033
https://doi.org/10.29303/ipr.v7i3.335
https://doi.org/10.19153/cleiej.28.1.10
https://doi.org/10.24036/eksakta/vol25-iss02/487
https://doi.org/10.22067/cke.v2i2.84917
https://doi.org/10.2307/3001968
https://doi.org/10.1080/01621459.1974.10482955
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1080/01621459.1993.10476408
https://doi.org/10.1145/2528521.1508275
https://doi.org/10.25080/majora-92bf1922-00a

 Original Article

Copyright © 2025 – Indonesian Journal of Applied Mathematics 17

Published by: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)

Institut Teknologi Sumatera, Lampung Selatan, Indonesia

Herho et al., Indonesian Journal of Applied Mathematics, vol. 5 (1), 2025, pp. 10- 26

Information 11(4), 193 (2020).

https://doi.org/10.3390/info11040193

[47] Watson, A., Babu, D.S.V., Ray, S.: Sanzu: A data science

benchmark. In: 2017 IEEE International Conference on Big

Data (Big Data), pp. 263–272 (2017).

https://doi.org/10.1109/BigData.2017.8257934

[48] Momcheva, I., Tollerud, E.: Software Use in Astronomy: An
Informal Survey. arXiv preprint arXiv:1507.03989 (2015).

https://www.itera.ac.id/

