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Abstract: In real life, due to various measurement limitations, not all variables in the dengue fever epidemic model 
can be measured. Therefore, a tool is needed to estimate unmeasured variables with known related variables. One 
method for estimating variables in nonlinear systems is the extended Kalman filter (EKF). Next, using these estimated 
results, optimal control will be sought in the form of vaccination to reduce the number of infections. From the 
simulation results, it can be concluded that state estimation with EKF for the dengue fever model is good enough to 
estimate state  that are disturbed by a random variable within the selected range of disturbance covariance. Then, it 
was found that the smaller the standard deviation of the disturbance, the smaller the optimal control required at the 
start. Thus, the greater the disruption, the greater the costs spent. 
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Abstrak: Dalam kehidupan nyata, karena berbagai keterbatasan pengukuran, tidak semua variabel dalam model 
epidemi demam berdarah dapat diukur. Oleh karena itu diperlukan suatu alat untuk mengestimasi variabel-variabel 
yang tidak terukur dengan variabel-variabel terkait yang diketahui. Salah satu metode untuk memperkirakan variabel 
dalam sistem nonlinier adalah Extended Kalman Filter (EKF). Selanjutnya, dengan menggunakan hasil perkiraan 
tersebut, akan dicari pengendalian yang optimal berupa vaksinasi untuk menurunkan jumlah infeksi. Dari hasil 
simulasi dapat disimpulkan bahwa estimasi keadaan dengan EKF untuk model demam berdarah cukup baik untuk 
mengestimasi setiap variabel dengan pengukuran yang diganggu oleh variabel acak dalam rentang kovarians 
gangguan yang dipilih. Kemudian ditemukan bahwa semakin kecil standar deviasi gangguan maka semakin kecil 
pula pengendalian optimal yang diperlukan pada saat start. Dengan demikian, semakin besar gangguan maka 
semakin besar pula biaya yang dikeluarkan. 

Kata Kunci: EKF, kontrol optimal, demam berdarah, vaksinasi 

Introduction  

Dengue is an infectious disease caused by the 
dengue virus which is transmitted through the bite 
of the Aedes aegypti mosquito. This disease is a 
significant public health problem in many tropical 
and subtropical countries, including Indonesia[1]. 
Dengue control efforts include various approaches, 
from vector (mosquito) control to vaccine 
development[2], [3], [4]. However, given the 
complex dynamics of disease spread, mathematical 

models that can help understand disease spread 
and control are becoming increasingly important. 

Epidemiological models are used to predict 
the spread of disease and evaluate optimal control 
strategies. One of the challenges in building this 
model is parameter uncertainty and imperfect data. 
In this context, the Extended Kalman Filter (EKF) 
and Optimal Control theory can be used to improve 
the quality of predictions and identify the best 
intervention strategies. EKF allows estimation of 
parameters that change over time based on 
observational data, while Optimal Control helps 

Open Access 

https://journal.itera.ac.id/index.php/indojam/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:hannahilyatiaulia@metrouniv.ac.id


Original Article    

2 | Indonesian Journal of Applied Mathematics , vol. 4, no. 2 (2024) e-ISSN: 2774-2016 

Extended Kalman Filter with Optimal Control On Dengue Model  

Hanna Hilyati Aulia, Regina Wahyudyah Sonata Ayu 

determine efficient control policies to minimize the 
impact of the disease[5], [6], [7]. 

This article discusses the application of the 
Extended Kalman Filter and Optimal Control in the 
dengue spread model. By using this approach, it is 
hoped that the resulting model will be able to 
provide more accurate predictions and more 
effective control strategies in reducing dengue 
prevalence in the population. 

To deal with this epidemic of dengue fever, 
common strategy for treating dengue fever is vector 
control. From the results of research conducted, 
preventative reduction of mosquito populations 
through vector control (reduction of larvae and 
insecticides) only delayed the outbreak [2], did not 
reduce the number of infections. This is in line with 
research on the use of insecticides[8]. Despite using 
vector control with community participation with 
active disease monitoring and insecticides, there 
was only limited success in preventing dengue fever 
and control on a national scale [9]. In addition, the 
use of insecticides can increase mosquito resistance 
levels[10]. As a result of the lack of specific 
treatment for dengue fever and limited treatment 
with vector control, vaccines are currently being 
developed as a form of treatment for dengue fever 
[3]. The vaccine is assumed to give temporary 
immunity, that is the resistant human can turn back 
to be susceptible. It is based on how dengvaxia 
vaccine that makes antibodies and protect against 
all four types but how long it last still on research. 

The dengue fever model with vaccination as 
control model is a system of nonlinear differential 
equations in the form of Susceptible-Infected-
Recovery (SIR) for human populations and 
Susceptible-Infected (SI) for mosquito populations. 
Initially, dengue with vaccination control was 
modeled as a constant control[2]. Subsequently, for 
a more realistic approach, the model was refined 
using optimal control theory. While some studies 
use the Aquatic-Susceptible-Infected (ASI) model 
for mosquito populations [11], his research adopts 
the SIR model for humans and the SI model for 
mosquitoes, focusing on preventing disease spread 
among humans rather than eradicating mosquito 
vectors. 

 

 

 

The adapted model in system (1) is a 
normalized form [12], the parameters and variables 
explained in Table 1 and Table 2. 

In real life, due to various measurement 
limitations, not all variables in the dengue fever 
epidemic model can be measured. Therefore, a tool 
is needed to estimate unmeasured variables with 
known related variables. One method for 
estimating variables in nonlinear systems is the 
extended Kalman filter (EKF). The extended 
Kalman filter is a development of the Kalman Filter 
for nonlinear models by linearizing the system 
around the estimated Kalman filter point, which 
was originally proposed by Stanley Schmidt for the 
spacecraft problem.[13] In general, the Kalman filter 
estimates the system based on measurements with 
the aim of minimizing error covariance. In this 
study, an extended Kalman filter with discrete 
measurements of infected human will be used to 
estimate the state in the dengue fever model. Next, 
using optimal control will be sought in the form of 
vaccination combined with EKF designed to reduce 
the number of infections, that is infected human.  

Method 

Assuming that the dynamic system of the 
dengue fever model is ideal, and the measurements 
have disturbances, the steps taken are illustrated in 
the following flow diagram. Based on the flow 
diagram in Figure 1, there are two main steps in 
control with estimation, namely: estimation stage 
and control update. First, we will look at the state 
estimation or this dengue fever model. Then, from 
the estimation results, optimal control 𝑢∗  will be 
sought using Optimal Control Theory. 

(1) 
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.  

Figure 1. Flowchart Optimal Control with EKF 

 

Table 1. Variables of dengue model 
 

Variable Description 

𝑠ℎ proportion of susceptible human 

𝑖ℎ proportion of infected human 

𝑟ℎ proportion of recovered human 

𝑠𝑚 proportion of susceptible mosquito 

𝑖𝑚 proportion of infected mosquito 
 

Table 2. Parameters of dengue model 
 

Parameter Description Unit 
1

𝜇ℎ

 Average lifespan of humans in days 
1

𝜇𝑚

 Average lifespan of adult 

mosquitoes 

in days 

B Average number of bites on 

humans by mosquitoes 

bites per 

days 

𝛽ℎ𝑚 Transmission probability from 

infected mosquitoes 

per bites 

𝛽𝑚ℎ Transmission probability from 

infected humans 

per bites 

𝜂ℎ Human recovery rate in days 

𝜃 waning immunity process proportion 

 

Results And Discussion 
State estimation with Extended Kalman Filter 

(EKF) 

In general, the steps for estimating a state 𝑥 
with �̂� using a continuous system EKF with discrete 
measurements are as follows[14]. 

Given a system of continuous and discrete 
measurements for each time 𝑡𝑘 , x is state variable 
and input control 𝑢 . 𝑓(𝑥, 𝑢, 𝑡)  is state transition 

function, 𝐺  represent the process noise transition 
matrix corrresponding with process noice 𝑤(𝑡) . 
ℎ[𝑥(𝑡𝑘), 𝑘]  is measurement function and 𝑣𝑘  is 
measurement noise. 

�̇� = 𝑓(𝑥, 𝑢, 𝑡) + 𝐺𝑤(𝑡) 

𝑦𝑘 = ℎ[𝑥(𝑡𝑘), 𝑘] + 𝑣𝑘 

For the initial state value 𝑥(0), with (�̅�0, 𝑃0) s 
the initial state estimate and its covariance, the 
process noise 𝑤(𝑡)  ∈ (0, 𝑄), and the measurement 
noise 𝑣𝑘 ∈ (0, 𝑅) 𝑎𝑟𝑒 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 uncorrelated 
white noise.[15] The step of EKF is 

1. Initialization 

�̂�0 = �̅�0, 𝑃(0) = 𝑃0 

2. Time Update 

Estimate 

�̇̂� = 𝑓(�̂�, 𝑢, 𝑡) 

Error Covariance 

�̇� = 𝐴(�̂�, 𝑢)𝑃 + 𝑃𝐴𝑇((�̂�, 𝑡) + 𝐺𝑄𝐺𝑇  

3. Measurement Update 

 Kalman gain 

𝐾𝑘 = 𝑃(𝑡𝑘)𝐻𝑇(�̂�𝑘)[𝐻(�̂�𝑘)𝑃(𝑡𝑘)𝐻𝑇(�̂�𝑘) + 𝑅]−1 

Error Covariance 

𝑃(𝑡𝑘) = [𝐼 − 𝐾𝑘𝐻(�̂�𝑘)]𝑃(𝑡𝑘) 

Estimate 

�̂�𝑘 = �̂�𝑘 + 𝐾𝑘[𝑦𝑘 − ℎ(�̂�𝑘 , 𝑘)] 

4. Jacobian 

𝐴(𝑥, 𝑡) =
𝜕𝑓(𝑥, 𝑢, 𝑡)

𝜕𝑥
 𝐻(𝑥) =

𝜕ℎ(𝑥, 𝑘)

𝜕𝑥
 

𝐴(𝑥, 𝑡) =
𝜕𝑓(𝑥, 𝑢, 𝑡)

𝜕𝑥
 𝐻(𝑥) =

𝜕ℎ(𝑥, 𝑘)

𝜕𝑥
Assuming  

𝐻(𝑥) =
𝜕ℎ(𝑥, 𝑘)

𝜕𝑥
Assuming  

The Jacobian from system (2) is 
(2) 
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Note that measured variable is infected human, so the 

measurement equation can be written as 

𝑦𝑘 = 𝑖ℎ + 𝑣𝑘 

so the measurement jacobian is 

 

We assumed the noise transition matrix 𝐺  is a 5 × 5 

identity matrix. The covariance matrix 𝑃 represents the 

uncertainty in the state variables of a system. Each 

element of 𝑃 describes how uncertain we are about the 

corresponding state variables, as well as how these 

uncertainties are correlated. Next, using the EKF 

method, the estimation results will be simulated with 

several standard deviations of disturbances. 

Simulation 
 

Figure 2. State Estimation with EKF 

Suppose the human population is 105  people, so the 

data available can be adjusted into proportions. 

Parameters used  for this simulation are 
1

𝜇𝑚
= 90, 𝐵 = 1, 

1

𝜇ℎ
= 71 × 365,  𝛽ℎ𝑚 = 0,375 , 𝛽𝑚ℎ = 0,375 ,  

𝜂ℎ =
1

3
[8], [11], [16]. The initial value 𝑥0 =

[0.975;  0.025;  0;  1;  0]  and the covariance matrix 𝑃0 =

 𝐼5. In this simulation, four types of measurement noise 

𝑣𝑘  are used, that is 0.01, 0.1, 0.5, and 1. In the first 

simulation, the EKF was applied without vaccination 

control ( 𝑢 = 0 ) showed in Figure 2 for each 

compartment. The result show that the smaller the 

measurement noise the closer the estimation results 

align with the nonlinear system. Likewise with error 

covariance, the smaller the disturbance covariance, the 

faster the error covariance will go.to zero. From these 

findings, it can be concluded that state estimation using 

the EKF for the dengue fever model, without system 
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interference, performs well in estimating each variable. 

This is true even when the measurements are affected 

by random noise within the selected measurement noise 

range. 

Optimal Control with Extended Kalman Filter 

The modified control design applies optimal control in 

conjunction with the Extended Kalman Filter (EKF). The 

optimal control 𝑢∗ is determined through the forward-

backward scheme[6] aiming to minimize the cost 

function 𝐽[𝑢] .  This approach utilizes the EKF to 

estimate the state variables, enabling the 

implementation of optimal control on the nonlinear 

model using the estimated states. Given the cost 

function 

 

where T is the end time, 𝛾𝐷𝑖ℎ
2  and 𝛾𝑉𝑢2  are quadratic 

functions that represent the burden of care for infected 

individuals and the burden of vaccination, respectively. 

If 𝑥 = [𝑠ℎ 𝑖ℎ 𝑟ℎ 𝑠𝑚 𝑖𝑚]𝑇  and 𝜆 =

[𝜆1 𝜆2 𝜆3 𝜆4 𝜆5]𝑇 ,  Hamiltonian from system (2) 

and cost function (3) is  

 

State functions from Hamiltonian  

 

Costate functions from hamiltonian 

 

with transversality condition 𝜆𝑖 = 0 for 𝑖 = 1, … 5. 

Stationery condition 

 

Control 𝑢  represents the proportion of susceptible 

humans that one decides to vaccinate at time 𝑡 . 

Parameter 𝜃  associated with control 𝑢  represents the 

waning immunity process. It is assumed that for every 

time 𝑡, a 𝜃 proportion of vaccinated human came back 

to susceptible. Optimal control problem is constrained 

for 0 ≤ 𝑢 ≤ 1 , so based on Pontryangin Minimum 

Principle, the optimal control 𝑢  for 0 ≤ 𝑡 ≤ 𝑇  is 

determined to minimize cost function subject to the 

constraints and the system dynamics. The principle 

states that the optimal control must satisfy the following 

 

The result is characterized control as follows 

 

Furthermore, the control 𝑢 can be written as 

 

Optimal control with EKF computed as follows 

(3) 

https://www.itera.ac.id/
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1. Choose the initial value 𝑢(0) 

2. Use the Extended Kalman Filter (EKF) to 

estimate the state function �̂� =
[�̂�ℎ 𝑖̂ℎ �̂�ℎ �̂�𝑚 𝑖̂𝑚]𝑇 

3. Compute the costate function backward with 

estimated states �̂� 

4. Update control 𝑢 by subtitute states and 

costate values 

5. Convergence checking, if error is small, control 

is optimal, if not, back to step 2. 

Simulation 

Forward-backward simulation using the parameter on 

EKF simulation with end time 𝑇 = 365. The simulations 

were carried out using a chosen θ = 0.05 that represents 

proportion of resistant who come back to susceptible at 

time t, performance index 𝛾𝐷𝑖ℎ
2 = 0.5 , 𝛾𝑉𝑢2 = 0.5  and 

𝑣𝑘 = 0.01. The result shown n Figure 4. Using EKF and 

Optimal control, it can be seen from Figure 3 and Figure 

4 that the optimal control obtained is a decreasing 

function and with this control the size of the infected 

population can be reduced from 0.1604 to 0.01997. This 

optimal control cost is 0.0565501731501846. Combining 

an Extended Kalman Filter with optimal control in a 

dengue model offers a robust approach for dynamically 

managing the disease. By providing state estimates and 

compensating for noisy and uncertain data, it enables 

the design of more adaptive. Next, a comparison of the 

reduction in the proportion of infected humans and 

optimal control for different standard deviations of 𝑣𝑘 

disorders will be studied. The optimal cost results for 

each standard deviation of disturbance are shown in 

Figure 5. 

 

Figure 3. Optimal Control 

 

 

 

 

 

Figure 4. Comparison of Optimal control with EKF and without 

control with EKF 
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Figure 5. Comparison of infected human and optimal control 

compartments for different noise standard deviations 

From Figure 5, the smaller the standard deviation 

of the disturbance, the smaller the optimal control 

required at the start. With a larger standard 

deviation of measurement noise, the human 

compartment infected after being given optimal 

control is greater. This can be caused by jumping at 

the beginning of the iteration with EKF due to the 

large standard deviation of disturbances, so that 

the estimation results for the infected human 

compartment are higher, as a result the resulting 

optimal control is also greater at the beginning. 

Conclusions 

This research shows that the application of the 

Extended Kalman Filter (EKF) and Optimal Control 

in the dengue fever spread model can provide 

significant benefits in addressing lighting 

parameters and determining effective control 

strategies. Through EKF, states that are difficult to 

measure directly can be estimated dynamically 

based on continuously updated observation data, 

thereby increasing the accuracy of predicting the 

spread of disease. On the other hand, Optimal 

Control allows designing optimal interventions, 

namely vaccination, which can minimize the 

number of infection cases in a cost-efficient manner. 

The simulations carried out prove that the 

combination of these two methods is able to 

produce better solutions than conventional 

approaches, especially in conditions where the 

dynamics of disease spread are strongly influenced 

by external factors such as the environment and 

intervention policies. It is hoped that the results of 

this research can help policy makers and public 

health practitioners in designing more adaptive and 

data-based dengue control strategies, so that they 

can reduce the rate of spread of the disease and 

reduce the overall economic and public health 

impact. Overall, this research reinforces the 

importance of using modeling and optimization-

based methods to face the challenges of infectious 

diseases such as dengue which continue to grow 

and require flexible and timely approaches. 

Conflicts of interest 

 There are no conflicts to declare. 

Acknowledgements 

The author would like to express his deepest 

gratitude to all parties who have contributed to the 

completion of this research. Thank you to the 

academic institutions and research institutes that 

have provided technical support and facilities for 

this research. We also thank fellow researchers and 

epidemiologists who provided valuable input 

regarding the Extended Kalman Filter and Optimal 

Control approaches used in this study. 

https://www.itera.ac.id/


Original Article    

8 | Indonesian Journal of Applied Mathematics , vol. 4, no. 2 (2024) e-ISSN: 2774-2016 

Extended Kalman Filter with Optimal Control On Dengue Model  

Hanna Hilyati Aulia, Regina Wahyudyah Sonata Ayu 

References 

[1] “World Health Organization (WHO.” [Online]. Available: 

https://www.who.int/news-room/fact- 

[2] M. Derouich, A. Boutayeb, and E. H. Twizell, A Model of 

Dengue Fever. BioMedical Engineering Online, 2003. 

[3] S. Murrel, S. C. Wu, and M. Butler, “Review of Dengue Virus 

and The Development of a Vaccine,” Biotechnol Adv, vol. 29, 

no. 2, p. 239, 2011. 

[4] D. C. P. P. P. Ch, “Tropical Disease Lacking Adequate Control 

Measures: Dengue, Leishmaniasis, and African 

Tripanosomiasis.” pp. 452–466. 

[5] S. Lenhart and J. T. Workman, Optimal Control Applied to 

Biological Models. Chapman & Hall/CRC Taylor and Francis 

Group, 2007. 

[6] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos, Optimal control, 

Third. New York: John Wiley & Sons, 2012. 

[7] K. D. Hammet, Control of Nonlinear Systems via State Feedback 

State- Dependent Riccati Equation Techiniques. Disertasi. Air 

Univerisity, 1997. 

[8] E. A. dan R. Newton and P., “A Model of The Transmission of 

Dengue Fever with An Evaluation of The Impact of Ultra-low 

volume(ULV) Insecticide Application on Dengue Epidemics,” 

Am J Trop Med Hyg, vol. 47;709-720, 1992. 

[9] P. Cattand and dkk, “Disease Control Priorities in Developing 

Countries.” 2006. 

[10] M. J. dan R. Keeling and P., Modeling Infectious Disease in 

Human and Animals. Princeton. Princeton University Press, 

2008. 

[11] H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, 

“Vaccination Models and Optimal Control Strategies to 

Dengue,” Mathematical Biosciences, vol. 247, pp. 1–12, 2013. 

[12] H. H. Aulia, R. Saragih, and D. Handayani, “Control Design 

for Dengue Fever Model with Disturbance,” Communication in 

Biomathematical Sciences, vol. 5, no. 2, Art. no. 2, 2022, doi: 

10.5614/cbms.2022.5.2.3. 

[13] S. F. Schmidt, “The Kalman filter - Its recognition and 

development for aerospace applications,” Journal of Guidance 

and Control, vol. 4, no. 1, pp. 4–7, Jan. 1981, doi: 

10.2514/3.19713. 

[14] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice 

Hall, 1998. 

[15] F. L. Lewis, Optimal and Robust Estimation: With an Introduction 

to Stochastic Control Theory, Second Edition.  

[16] Z. A. Leleury, Y. A. Lesnussa, J. B. Bension, and Y. S. 

Kakisina, “Anali- sis Stabilitas Model SIR (Susceptible, 

Infected, Recovery) pada Penyebaran Penyakit Demam 

Berdarah Dengue di Maluku,” Jurnal Matematika, vol. 7, no. 2, 

p. 158, 2017. 

 


